
Geometric Computability: Twin Helices and

the Algebra of Flow

Benjamin Kaminsky

July 9, 2025

Abstract

In this work, I construct a manifold comprising of twin helices that explicitly validates the exis-
tence of computational geometric bordisms, as anticipated in the broader program of the cobordism
hypothesis. I investigate its geometric, topological, algebraic and computational properties. This
work suggests the emergence of a new research direction that I call “Geometric Computability
Theory”, situated at the crossroads of geometry, topology, and computability theory. I prove that
encoding of arbitrary size finite state machines is possible using these “Geometrically Computable
Manifolds” leading to the emergence of Turing Complete phenomena. Further constructions are
made on the nature of quantum-like and n-ary/fuzzy computing behavior leading to the forma-
tion of a general metatheorem for the behavior of computational logic to explain the origin of
Rice’s Theorem. I describe their behavior in terms of Kleene’s theory of partial recursive func-
tions. Following that I use ordinary differential equations to model discrete fluidic computation.
This perspective opens numerous avenues for future investigation, potentially reshaping our under-
standing of computation in continuous spaces including applications to the infamous Yang-Mills
existence and mass gap. As of writing, algebraic systems to formalize the behavior these geo-
metrically computable manifolds appears to be absent. Future work will involve the development
of formal algebraic frameworks, rigorous computational models, and experimental simulation of
system behaviors.

1

Contents

1 Introduction 3

2 FVISA Solids and the Properties of Twin Helical Manifolds 4
2.1 Replacing the Horn . 4
2.2 Volume and Surface Area Integrals on Helical Solids . 4
2.3 Chirality and Alignment . 6
2.4 FVISA Plus Ultra . 7
2.5 The Group Structure and Geometric Topology of Twin Helices 9

3 Geometrically Computable Manifolds—Achieving Turing Completeness in R4 14
3.1 Geometrically Computable Manifolds . 14
3.2 Geobits—Bits, Geometric Bits, and State Space . 15
3.3 FSM Encoding for KTH . 18
3.4 The GCM Lattice . 20
3.5 Visualizing the Shape of Computation . 21
3.6 The Geometry of Logic . 22
3.7 Syntax, Semantics, and Computation: A New Synthesis 27

4 A Kleene-Theoretic Approach to Foundations for GCT 34
4.1 Fibered Kets and Tensor Products . 34
4.2 Partial Recursive Functions—Primitives and Composition 34
4.3 Kleenes Theorems for Computational Groupoids . 37

5 A Geometric Topology Framework for Discrete Fluidic Computation 40
5.1 Fluidic State Systems . 41
5.2 Composition of Quasi-Fluidic GCMs in a KL . 42
5.3 Well-Behaved Vector Fields in ESM+ and the Paradox of Analog Computation 44
5.4 A Dynamical Systems Approach for Modeling FSS with ODEs 44
5.5 The Algebra of Flow . 47
5.6 Application of Lie Groupoids to the Quasi-Fluidic Regime 50
5.7 Fiber Bundles and Moduli Spaces on Chiral Manifolds 53
5.8 Lancret’s Ghost? . 55
5.9 Spooky Action Up Close . 56
5.10 Chaos Unleashed . 60
5.11 A New Frontier and an Algebraic Gap . 61

6 Categorical, Philosophical and Practical Considerations for Geometric Computabil-
ity 64
6.1 Constructing Categories . 64
6.2 Implications for Reversible Computing . 67
6.3 Comparison to Blum-Shub-Smale Model . 67
6.4 Computing the Uncomputable? . 68
6.5 Relationship to Topological Kleene Field Theories . 68
6.6 Computational Gauge Theory and the Yang-Mills Mass Gap Existence 69

7 In Closing 76

2

1 Introduction

The following paper is admittedly difficult to write an introduction for, try as I might.

This work presents a geometric model of computation constructed from helically structured mani-
folds, with morphisms defined by flow transformations that preserve finite-energy symbolic invariants.
The resulting category is enriched over a symmetric monoidal category of structured flows—including
chirality, join angle, and torsion data—enabling a deterministic yet expressive semantics that encodes
symbolic computation directly in geometric topology.

The model emerges from an attempt to reconcile semantic expressiveness in programming lan-
guages (in the sense of Felleisen and Sabry) with the structural stability and reversibility of geometric
processes. While syntactic semantics often struggles to formalize languages with rich dynamic struc-
ture, the approach taken here replaces syntactic encodings with differential-geometric ones, specifically,
moduli spaces of helices and their categorical behavior under symbolic flow.

From this construction arises a new class of computational objects: deterministic symbolic flows
that admit non-invertible, non-cancellative monoidal structure due to chirality constraints, and whose
torsion data encode the computational equivalent of randomness within otherwise reversible systems.
The resulting enriched category naturally supports symbolic computation with bounded state and
fixed-point behavior, and exhibits expressive capacity that surpasses classical VM-like models (e.g.,
Turing machines and register machines) while retaining verifiability at the topological level.

Along the way, the paper draws from and in some cases unifies results from differential geometry,
Lie groupoids, and topological quantum field theory. In particular, the construction directly validates
predictions made in the work of Baez (notably on the cobordism hypothesis and quantum tetrahedra)
and synthesizes ideas from Miranda’s work on topological semantics and Felleisen’s work on language
expressiveness. The outcome is a model that sits at the intersection of computability, topology, and
symbolic representation and in doing so, subtly suggests the inadequacy of current homotopy-theoretic
assumptions for describing such enriched systems.

Notably, while the construction is purely deterministic, it reveals the origin of computational ran-
domness as a quotient of geometric complexity. A coarse-graining of torsion and chirality across moduli
spaces. This gives a concrete realization of what may underlie quantum indeterminacy: a deterministic
symbolic process whose full structure is not observable from any single projection. The paper concludes
with a conjecture—inspired by the Lost Melody theorem of Hamkins and Lewis—that formalizes this
idea as a boundary condition on computable real analysis and symbolic flow.

There is little else I can say at this point, except if you are to read it, do so with care, and a few
times over—if need be. The extreme interdisciplinary approach is by necessity. Part of me wishes
it was not so for the sake of accessibility, but changing any element would diminish the impact of
what I wish to communicate about this model. Due to the the nature of the subject, I’ve purposely
chosen explanation with heavy reliance on analogization maps, charts, and worked examples. This is
a feature—not a bug. Papers addressing foundational computational models are rare, ranging from
the technically austere (Turing, Shannon, Cook) to the more recent and abstract (Blum-Shub-Smale,
Miranda-Peraltes-Cardonez).

There is exactly one Lagrangian in this paper. The rest is computation. There is no standard
blueprint for writing a paper that defines an entire computational model from scratch. The number of
people in history who have defined such computational models is a vanishingly small one. I now find
myself in the rather strange position of being among them.

I think the nature of mathematical discovery is all to often shrouded, much like the subject of my
study. So, as I pull back the curtain, so too can you join me.

Thank you.

3

2 FVISA Solids and the Properties of Twin Helical Manifolds

2.1 Replacing the Horn

Let us begin by supposing that an evil topology demon from a higher-dimensional plane has invaded
our mortal R3 world.

Being a naturally mischievous creature, it has taken away our ability to rotate asymptotic R2 curves
into R3, in an attempt to silence the archangel Gabriel by erasing his horn. Students in calculus classes
across the world can no longer learn about the canonical paradoxical example of solids of finite volume
and infinite surface area (“FVISA”) using surface integrals.

Can we still generate a solid with the FVISA property to teach them? Thankfully, the answer is
yes. By using helical, rather than rotational, symmetry, such an object is within constructive reach.
In fact, not only is it attainable, but its inherent algebraic and computational richness will become
apparent as we proceed.

We construct a helical solid with FVISA properties by the following method. Begin with the
standard parametric equation for an idealized helix. Let the general parametric form for our helix γ(θ)
be:

γ(θ) = (R cos(θ), R sin(θ), hθ)

We now define the solid points of the helical object using the following equation:

S = {S(θ, r′, ϕ) | θmin ≤ θ ≤ θmax, 0 ≤ r′ ≤ ρ(θ), 0 ≤ ϕ < 2π}

Here, S(θ, r′, ϕ) denotes the point in R3 obtained by starting at position γ(θ) on the helical spine,
then moving a distance r′ in the plane normal to the spine at angle ϕ. The cross-sectional radius is
given by a parametric function ρ(θ), where

ρ(θ) =
k

θ

and a and k are positive constants k > 0. We consider the domain θ ≥ θmin for some θmin > 0 to
avoid the singularity at θ = 0. This function inflates the spine of our helix, assigning it volume over
all points in its domain. As the radius decays, ρ(θ) normally produces a helical solid of finite surface
area, but in our case we adjust it to achieve the FVISA condition.

Definition 2.1. Let ρ(θ) = k
θ define the cross-sectional radius of the helix for θ in some domain

[θmin, θmax], with k > 0.
Base: The base of the helix is defined as the point where ρ(θ) attains its maximal value, i.e., at

θ = θmin:

ρbase := ρ(θmin) =
k

θmin
.

Equivalently, given a desired base radius ρbase > a, the corresponding value of θmin is

θmin =
k

ρbase
.

Apex: The apex is defined as the point where ρ(θ) attains its minimal value, i.e., at θ = θmax:

ρapex := ρ(θmax) =
k

θmax
.

2.2 Volume and Surface Area Integrals on Helical Solids

For the solid formed by extending a tubular neighborhood around the helical spine, the volume V and
surface area SA are given by the following integral formulas. Consider a tube that extends infinitely
along the spine for θ ∈ [θmin,∞). Then:

V =

∫ ∞

θmin

π[ρ(θ)]2 |γ′(θ)| dθ

4

SA =

∫ ∞

θmin

2πρ(θ) |γ′(θ)| dθ

Here, |γ′(θ)| is the magnitude of the tangent vector to the curve γ(θ), which corresponds to the
differential arc length element along the central spine.

For our standard helix
γ(θ) = (R cos(θ), R sin(θ), hθ),

the derivative is
γ′(θ) = (−R sin(θ), R cos(θ), h),

whose magnitude is constant:

|γ′(θ)| =
√

(−R sin θ)2 + (R cos θ)2 + h2

=
√
R2 + h2.

We denote this constant arc length element by Lγ =
√
R2 + h2.

Substituting |γ′(θ)| = Lγ and ρ(θ) into the formulas above yields:

V = πLγ

∫ ∞

θmin

(
k

θ

)2

dθ and SA = 2πLγ

∫ ∞

θmin

(
k

θ

)
dθ.

To ensure the FVISA property, we examine the asymptotic behavior of the cross-sectional radius
function ρ(θ). In general, ρ(θ) must decay toward zero as θ → ∞ in a manner resembling a power law.
For instance, let:

ρ(θ) =
C

θq
, with C > 0, q > 0

Then the corresponding helical solid exhibits FVISA behavior if and only if the exponent q lies in
the range

1

2
< q ≤ 1.

This ensures that the total volume converges while the surface area diverges due to the slow decay
of ρ(θ).

For symbolic integration, let us take the specific case ρ(θ) = k
θ . Then the integrals simplify to:

V =

∫ ∞

0

πk2
√
R2 + h2

θ2
dθ = πk2

√
R2 + h2

SA =

∫ ∞

0

2πk
√
R2 + h2

θ
dθ → ∞.

Thus, we have constructed a geometric object with the FVISA property, achieved not by rotating
2D curves, but through helical extension and decay.

Remark 2.1. For our purposes, we define a valid output from ρ(θ) for a non-infinite helix as satisfying
two requirements:

1. It must describe a closed curve forming a smooth 2-manifold.

2. The value at ρ(θmax) must not produce a point singularity at the apex of the helical solid.

Regarding the second requirement, although it is not immediately relevant, every finite helix con-
structed in this paper will remain topologically smooth at both endpoints. This is accomplished by
using a non-linear function for ρ(θ), such as a squared sine profile:

ρ(θ) = ρmax sin
2

(
π

θ − θstart
θend − θstart

)
for θ ∈ [θstart, θend], and ρ(θ) = 0 otherwise. This produces a tube that smoothly tapers to zero radius
at both ends, with vanishing derivative at the endpoints and non-singular tips.

For parametric simplicity, we select the circle as the volumetric cross-section for all computations
in this section. However, the requirement to avoid singularities at the helix apex can be satisfied in
many ways. Topologically, it suffices to ensure smoothness via any appropriate diffeomorphism near
the endpoints, even if the cross-sectional radius remains constant elsewhere.

5

Figure 1: A New FVISA Solid. Its Sound Profile Differs From That of Gabriel’s Horn.

2.3 Chirality and Alignment

Definition 2.2. A subset O ⊂ Rn is said to have chirality if it is not properly congruent to its mirror
image. Equivalently, O is chiral if for every reflection r across a plane in Rn, there exists no proper
isometry g such that g(O) = r(O).

Definition 2.3. We say that helices may possess either left-handed or right-handed chirality. A helix
is left-handed if h < 0 and right-handed if h > 0.

Lemma 2.1 (Spiral Matching Lemma). Let S1 and S2 be Archimedean spirals. A C2-smooth curve
connecting S1 to S2 at a common point P exists if and only if the position, tangent direction, and
curvature of S1 and S2 are all equal at P .

Proof. The conditions stated in the lemma—matching position, tangent, and curvature—are the stan-
dard requirements for ensuring C2 continuity between any two curves at a junction point. The “if”
part of the statement is true by definition. We focus on proving the “only if” part, which demonstrates
that these conditions must hold and leads to a constraint on the spirals’ chirality.

Let the Archimedean spirals S1 and S2 be described in polar coordinates by the equations r = a1θ
and r = a2ϕ, respectively. The constant a determines both the spread and the chirality (or handedness)
of the spiral. By convention, if a > 0, the spiral is counter-clockwise (left-handed), and if a < 0, it is
clockwise (right-handed).

For a C2-smooth transition, the signed curvature κs of both spirals must be equal at the point of
connection, P . The signed curvature of an Archimedean spiral r = aθ is given by:

κs(θ) =
θ2 + 2

a(θ2 + 1)3/2

Crucially, the sign of the curvature is determined by the sign of the parameter a. A left-handed spiral
(a > 0) has a strictly positive signed curvature, while a right-handed spiral (a < 0) has a strictly
negative signed curvature.

Assume, for the sake of contradiction, that S1 and S2 have opposite chiralities but can be joined
at a point P by a C2-smooth curve. If the chiralities are opposite, then their defining parameters a1
and a2 must have opposite signs. This implies that their signed curvatures, κs,1(P) and κs,2(P), must
also have opposite signs.

The condition for a C2 join is κs,1(P) = κs,2(P). However, if two non-zero numbers have opposite
signs, they cannot be equal. The only way for this equality to hold would be if both curvatures were
zero.

κs,1(P) = κs,2(P) = 0

Observing the curvature formula, the numerator θ2+2 is never zero for any θ ∈ R. Thus, the curvature
of an Archimedean spiral is never zero. This is a contradiction.

6

Figure 2: Same chirality alignment among spirals, a “top down” view for our helices

Therefore, a C2-smooth connection cannot be formed between two Archimedean spirals of opposite
chirality. For the curvatures to be equal at P , the spirals must have the same chirality (i.e., sgn(a1) =
sgn(a2)).

Corollary 2.2 (Spiral Chirality Constraint). Let S1 and S2 be Archimedean spirals. A C2-smooth
path connecting them at a common point can exist only if their chiralities are the same.

Proof. This is a direct consequence of the Spiral Matching Lemma. As proven above, the requirement
for matching curvatures at the connection point, κs,1(P) = κs,2(P), can only be satisfied if the signs
of the curvatures are the same, which in turn requires the spirals to have the same chirality.

Remark 2.2. This lemma illustrates a fundamental principle in geometric design: a global property
of a curve often dictates its local properties. Here, the chirality of the spiral is a global characteristic
that determines the sign of its curvature at every point. For two such curves to be joined with
C2 smoothness, their local properties (position, tangent, and curvature) must align perfectly. The
constraint on curvature thereby enforces a constraint on the global properties, meaning only spirals
that “turn” the same way can be smoothly connected.

Remark 2.3. This illustrates a general principle: local smoothness does not guarantee global geometric
continuity. While it is always possible to construct a C2 (or even C∞) join between two curves at a
point by adjusting derivatives, the global topological data—such as the cumulative winding number
or chirality—may not extend through the join without interruption. In geometric computation, this
corresponds to the loss or resetting of “phase information” across a smooth path.

2.4 FVISA Plus Ultra

To complete the construction, we now define a mirrored helix and perform a topological gluing oper-
ation to form a pair of helices with opposing chirality, joined at their respective bases. One helix is
defined by the original parametric equations, and the second by a reflected version of those equations.

Definition 2.4 (Reference Frame). Throughout this work, we fix the standard right-handed coordinate
frame in R3. The positive z-axis, e⃗z, serves as the primary axis of reference for defining chirality and
orientation of all geometric computable manifolds (GCMs). The reference hyperplane is the xy-plane
at z = 0. All geometric, group, and logical actions are measured relative to this frame.

Definition 2.5 (Binary Orientation of a Helix). Let H be a helix in R3 with axis of symmetry parallel
to the z-axis. The orientation of H is defined by the monotonicity of its z-coordinate as a function of
its intrinsic parameter u, increasing from base to apex:

Upwards-oriented: z(u) is strictly increasing from base to apex.
Downwards-oriented: z(u) is strictly decreasing from base to apex.

Let γA and γB be parametric curves defining Helix A (HA) and Helix B (HB), respectively. The
helix HB is defined as a rotation of HA by 180◦ (or π radians) about the x-axis. This transformation
maps a point (x, y, z) to (x,−y,−z).

Let θ ∈ (−∞, 0] and define θ = −ϕ with ϕ ∈ [0,∞). Then:

7

γA(−ϕ) = (r cosϕ, r sinϕ, −hϕ), θ ∈ (−∞, 0]

γB(−ϕ) = (r cosϕ, −r sinϕ, hϕ), θ ∈ [0,∞)

To apply the topological gluing, let HA and HB be compact 3-manifolds with boundary embedded
in R3, representing the tapering helices. Each Hi (i = A,B) has a single boundary component ∂Hi,
which corresponds to the helix’s base. Let Bi ⊂ ∂Hi denote the base surface of Hi, corresponding to
the endpoint 0 of the interval [0, 1] in the product structure D2 × [0, 1]. Since we assume closed conic
cross-sections, each Bi is homeomorphic to the closed 2-disk D2.

To construct the twin helical manifold, denoted by HAB , we identify B1 ⊂ ∂HA and B2 ⊂ ∂HB via
a diffeomorphism. Assume compatible parameterizations of B1 and B2, for example using polar coor-
dinates (ρ, θ) induced from local cylindrical coordinates at the helix bases. A canonical identification
map is

f : (ρ, θ) 7→ (ρ, θ)

(i.e., the pointwise identity).
Let HA and HB be parameterized by smooth curves γA : [0, 1] → HA and γB : [0, 1] → HB ,

representing the helical axes. To ensure C1-smoothness at the join, we insert a short transition (spline)
region of width ε > 0 near the base disk D2.

Let pA = γA(1) and vA = γ′A(1) denote the endpoint and tangent of HA at the join, and pB =
γB(0), vB = γ′B(0) the corresponding data for HB . Define the transition curve S : [0, 1] → R3 as a
cubic Hermite spline:[1]

S(s) = (2s3 − 3s2 + 1)pA + (s3 − 2s2 + s) εvA + (−2s3 + 3s2)pB + (s3 − s2) εvB

for s ∈ [0, 1].
The full axis curve γ̃ : [0, 2 + ε] → R3 is then given by

γ̃(t) =

γA(t), t ∈ [0, 1]

S
(
t−1
ε

)
, t ∈ [1, 1 + ε]

γB(t− 1− ε), t ∈ [1 + ε, 2 + ε]

The tubular neighborhoods about γ̃ (with appropriate cross-sectional radii) define the smooth body
of HAB .

Now, as before, form the disjoint union HA⊔HB and define the equivalence relation ∼ by p ∼ f(p)
for all p ∈ B1. The topological quotient space is

HAB = (HA ⊔HB)/ ∼,

now, the embedding in R3 is globally C1 at the join, with matching tangents and continuous geometry
across the glued disk.

Geometrically, this construction realizes HAB as a smooth union of the two helices, attached along
a common base disk, with a transition region that interpolates smoothly between their axes, ensuring
the entire manifold has at least C1 (and, with higher-degree splines, potentially C∞) regularity.

We term this new construction Kaminsky Twin Helix (“KTH”), or equivalently a Twin Helical
Manifold. It is defined over the domain (−∞,∞) with respect to the z-axis in R3, presenting not one
but two escape vectors to infinity—within a single finite volume object.

Definition 2.6 (Kaminsky Twin Helix and Unit Helices). A KTH is defined as a helical manifold
in Rn formed by a topological gluing of two helical solids via a diffeomorphism at their respective bases.
The two helices composing a single KTH are termed unit helices, denoted HA and HB .

Remark 2.4. Such a smooth manifold cannot be constructed by a simple “mirror and glue” operation
on a surface of revolution like Gabriel’s Horn, due to the lack of a well-defined tangent plane at the
asymptote. The horn’s rotational symmetry becomes a defect: overly rigid, it prevents the definition of
a smooth gluing without singularity. Helical symmetry, by contrast, allows us to bypass this limitation
and construct a FVISA object with unrestricted, doubly infinite domain. This controlled asymmetry
will prove essential to the novel properties of the KTH.

8

Frustrated by the reemergence of the horn—now in doubled form—the topology demon retreats
back to its abstract plane of being. Thus, with the help of an unlikely geometric ally, the day is saved.
With the pedagogical crisis resolved, we may now examine the deeper structure of this manifold.

To return to the finite, we adjust each helix so that it no longer tapers asymptotically. Let q > 1
in ρ(θ) for both helices from this point onward.

By combining different chiralities and orientations, we define a geometric family of four canonical
manifolds, denoted KTH4. This family exhibits the following features:

• Smoothness of all orders: C0, C1, and C∞

• Geometric representation isomorphic to the Klein four-group V4

• Higher-order generalizations admit non-abelian symmetry groups

• Turing completeness under certain geometric encoding schemes

• Classical simulation of quantum-like computation via geometric flow

• Deep and unexpected links to the Yang–Mills existence gap and quantum formalism

2.5 The Group Structure and Geometric Topology of Twin Helices

Let us continue with the construction of a family of geometric objects working now in R4 composed
of two unit helices to form 4 unique variations of the KTH. Our two variables of construction for unit
helices are Orientation and Chirality as defined previously.

This yields a total 4 distinct invariant configuration states

Table 1: Essential Type Chart for Twin Helical Manifolds

Labeled Chirality Orientation Axiality Mnemonic
Type 1 Opposite Opposite Coaxial Mirrored Horn
Type 2 Opposite Same Coaxial Twisting Pair/DNA-like
Type 3 Same Opposite Offset Mirrored Symmetrical Flow
Type 4 Same Same Offset Pair of Horns/Drills

However, our Type 2 helix has a small problem. A simple drawing reveals that constructing a twin
helix with its attributes becomes problematic in the previously defined R3 space. A closer investigation
leads to the following conclusion.

Lemma 2.3 (Twin Helix Intersection Lemma). No twin helical manifold sharing both axial alignment,
orientation, and opposing chirality can exist without intersection of its respective unit helices in R3.

Proof. Let HA and HB be two coaxial helices parameterized by t ∈ [0, 1]. Both helices share the same
radial function r(t) and the same axial function z(t). Their distinction lies in chirality and a possible
phase offset.

The angular position of a point on helix Hx at parameter t is given by:

αx(t) = 2πNχxt+ ϕx,

where:

N is the number of turns in one unit helix,
χx is the chirality of Hx, with χA = −1 and χB = 1 for Type 2,
ϕx is the phase offset. Without loss of generality, we may set ϕA = 0.

The center lines of the two helices intersect if, for some t ∈ [0, 1], their angular positions coincide
modulo 2π. That is:

αB(t)− αA(t) = 2kπ for some integer k.

9

(a) Type 1 (b) Type 2

(c) Type 3 (d) Type 4

Figure 3: The KTH4 Geometric Family.

Substituting the expressions for αA(t) and αB(t), we obtain:

(2πNχBt+ ϕB)− (2πNχAt) = 2kπ

2πNt(χB − χA) + ϕB = 2kπ

4πNt+ ϕB = 2kπ.

Define the function f(t) = 4πNt+ ϕB . An intersection occurs if there exists a t ∈ [0, 1] such that
f(t) = 2kπ for some integer k.

The function f(t) is continuous and monotonic on [0, 1] (assuming N > 0). The values it takes
range from:

f(0) = ϕB , f(1) = 4πN + ϕB .

This interval has length 4πN . For f(t) to contain at least one multiple of 2π, it suffices that:

4πN ≥ 2π ⇒ N ≥ 1

2
.

By the Intermediate Value Theorem, since f(t) is continuous on [0, 1], it must attain all values in
the interval [ϕB , ϕB + 4πN]. If this interval has length at least 2π, it must contain at least one value
2kπ. Therefore, for N ≥ 1

2 , there always exists a t ∈ [0, 1] for which αB(t) ≡ αA(t) mod 2π, and thus
the helices intersect.

Hence, for any N ≥ 1
2 , it is mathematically impossible to choose a constant angular phase offset

ϕB that avoids intersection of the center lines of the Type 2 twin helices on [0, 1].

Remark 2.5. Such is the nature of V4. Like its close cousin the Klein bottle, manifolds in this symmetry
class resist consistent embedding in R3 without self-intersection. The issue arises from an implicit non-
orientable twist in the configuration. It becomes analogous to the problem of embedding a Klein bottle

10

in R3 without singularities. These twists violate the global orientability and parallelizability needed
for a smooth immersion.

This is a known result in algebraic topology [2], though its appearance here is unconventional.
Rather than be discouraged, we now move into R4, where the additional dimension allows a clean, self-
consistent embedding of these twist-preserving manifolds—preserving both the geometric and group-
theoretic structure of the system.

Proposition 2.4 (KTH4
∼= V4). The set of twin helical manifolds of type KTH4 admits a group

structure under the action of discrete transformations of chirality and orientation. This group is
isomorphic to the Klein four-group V4.

Proof. Let Htypes = {Type 1,Type 2,Type 3,Type 4}, representing the four configurations of unit he-
lices determined by combinations of chirality (Same vs Opposite) and orientation (Same vs Opposite).

Define the following transformations acting on Htypes:

• Identity I: Trivial transformation. I(Ti) = Ti for all Ti ∈ Htypes.

• Chirality Swap X: Swap the chirality relationship (Same ↔ Opposite), while preserving orien-
tation.

• Orientation Swap Y : Swap the orientation relationship (Same ↔ Opposite), while preserving
chirality.

• Composite Z = X ◦ Y : Acts by applying both swaps.

The action on the four manifold types proceeds as follows:

Type (Chirality,Orientation) X Y
H1 (O, O) H3 H2

H2 (O, S) H4 H1

H3 (S, O) H1 H4

H4 (S, S) H2 H3

Composition rules:

Z = X ◦ Y = Y ◦X
Z(H1) = X(Y (H1)) = X(H2) = H4

Z(H2) = X(Y (H2)) = X(H1) = H3

Z(H3) = X(Y (H3)) = X(H4) = H2

Z(H4) = X(Y (H4)) = X(H3) = H1

All non-identity elements have order 2:

X2 = I, Y 2 = I, Z2 = (X ◦ Y)2 = X2 ◦ Y 2 = I

Pairwise compositions:

X ◦ Y = Z, Y ◦X = Z ⇒ X ◦ Y = Y ◦X

X ◦ Z = X ◦ (X ◦ Y) = (X ◦X) ◦ Y = I ◦ Y = Y

Y ◦ Z = Y ◦ (X ◦ Y) = (Y ◦ Y) ◦X = I ◦X = X

The set of transformations G = {I,X, Y, Z} forms a group under composition. All elements have order
1 or 2, and the group is abelian.

Thus,
KTH4

∼= G ∼= V4.

11

Table 2: Group Progression of the KTH4 Family

Group Structure Order Defined by... Type
V4 ∼= C2 × C2 4 Chirality and orientation combinations

of the 4 canonical KTH4 types
abelian

D4
∼= (C2 × C2)⋊ C2 8 Chirality flips + swapping identity of

the two helices
non-abelian

C4
2 16 Independent flips of (χA, χB , dA, dB)

for each unit helix
abelian

C4
2 ⋊ C2 32 Above + helix identity swapping

symmetry
non-abelian

(C4
2 ⋊ C2)× C4 128 Adds 90° global rotation symmetry

around z-axis
non-abelian

(C4
2 ⋊ C2)× C4h

∼= (C4
2 ⋊ C2)× (C4 × C2)

256 Full group including xy-plane
reflection symmetry (σh)

non-abelian

Table 3: Generators of the KTH256 Symmetry Group

Generator Action
c1 Flip chirality of Helix A
c2 Flip chirality of Helix B
d1 Flip orientation of Helix A (up/down)
d2 Flip orientation of Helix B (up/down)
S Swap identity of Helix A and Helix B
R90 Global 90° rotation of the twin helix around the z-axis
σh Reflect the entire twin helix across the xy-plane

The following table of the calculated FSG progressions via the GAP has been provided for ease of
reference.

In addition, the generators of KTH256 and lower orders are listed below.
As shown in Table 3, the group KTH4 generated by these symmetries exhibits a progression

toward non-abelian behavior as more generators and state permutations are introduced. Preliminary
computations suggest a rapidly growing group order (originally estimated at 256, but more accurately
in the range of 1028 or higher when accounting for all independent orientation and chirality swaps
between the two helices).

I note that this group structure may not be unique to the present construction. Similar generator
sets appear in various symmetry and braid group contexts. The explicit relations and full structure of
KTH4, including its precise order are left open for further investigation, ideally by those with more
expertise in computational geometric group theory. A more thorough enumeration of the group’s
elements and the relationships among generators would be an interesting direction for future work.

We will now explore the topology of the KTH. A single helical solid is best thought of as a compact
3-manifold with a boundary in R3 that also contains a single non-smooth boundary (the base). When
we glue together the bases of two such unit helices in a proper manner, we form a larger compact
3-dimensional manifold with single boundary. The original bases become an internal surface, and the
boundary of the new KTH consists of the original helical side surfaces and the tapered tips. KTH is
of course homeomorphic to D3 in topological terms, giving genus 0.

Singularities at the apex are indeed a threat, if the volume of the helix was indeed to taper suddenly
at the end to a point. But note that we have eliminated them earlier in the paper by way of a non-linear
ρ(θ) volume decay or diffeomorphisms that produce smooth apex to KTH’s unit helices.

Remark 2.6. KTH is defined as the topological union of two helical solids joined along their bases.
This construction may introduce a non-smooth seam at the join, but we can consider this singularity
idealized and computationally negligible, as the manifold is not used to model physical flow under
Navier-Stokes constraints. We intend to compute under symbolic or topological conditions with ideal-
ized continuity assumptions. Those with more experience in topological surgery than the author are
encouraged to provide a method for smoothing such a feature if it causes an issues should they require
a perfectly smooth KTH interior in their own computations.

12

Proposition 2.5. KTH is differentiable, continuous, and smooth everywhere (C0, C1, C∞)

Proof. KTH is constructed as the union of two smooth (C∞) manifolds, each with boundary, glued to-
gether along their bases by a C∞ diffeomorphism. By the standard compatibility of smooth structures
under such gluings, the resulting manifold is C∞ (and thus C1, C0) everywhere. Any non-smoothness
at the seam can be made arbitrarily small (or eliminated) by choosing a sufficiently smooth gluing
map and, if necessary, smoothing the cross-section function near the join.

13

3 Geometrically Computable Manifolds—Achieving Turing Completeness in R4

We now begin the construction of a Turing Machine (“TM”) from a lattice of KTH manifolds. The
feasibility of this approach rests on the fact that KTH, unlike most manifolds, provides a rich but
controlled symmetry space. This is made possible by the independent adjustability of chirality and
orientation of the unit helices.

It is precisely because most well-known shapes in this metric (e.g., circles, tori, spheres) possess
too much symmetry—not too little—that they fail to offer the structural asymmetry needed for com-
putational behavior. The KTH construction breaks this impasse.

3.1 Geometrically Computable Manifolds

Definition 3.1 (Geometrically Computable Manifold). A Geometrically Computable Manifold
(“GCM”) is a smooth manifold composed of a finite arrangement of geometric substructures, each with
finite-dimensional internal state. It is equipped with a locally defined set of transition rules such that
the evolution of these states over discrete steps simulates any finite automaton—and, when sufficiently
composed, simulates a Turing Machine.

More formally, a GCM is a 3-tuple G = (M,Σ,Φ), where:

M A smooth manifold or structured geometric space
Σ A map assigning encodable states to substructures
Φ : (p, s) 7→ (f(p), τ(s)) A local state transition rule composed of a diffeomorphism and state update

We elaborate each component in turn:

M : The manifold must be smooth, with well-defined local transitions and no bifurcation ambiguities.
State evolution must exhibit finite branching at every encoding site. The manifold may carry a clock
parameter t (e.g., tape-traversal or arc-length) to encode sequentiality. Globally, it must be piecewise-
constructible from a finite set of geometric or topological primitives.
Σ: The state map

Σ : N →M

assigns discrete states to geometric locations (points, submanifolds, fibers, etc.). It is either partially
recursive or totally recursive (if totality is specified externally). This map functions like a memory
encoding or addressing system across the geometry.
Φ: The local transition rule is defined as a map

Φ : (p, s) 7→ (f(p), τ(s)),

where f : U → V ⊂ M is a local diffeomorphism, and τ is a state transition function. The updated
state is given by:

Σ′
V = ΣU ◦ f−1.

Where:

p ∈ U ⊂M is a point or neighborhood in the manifold
s ∈ S is the local state at p
f is a geometric transformation
τ is a state evolution function, either identity or nontrivial depending on f

Remark 3.1. So what is a GCM, really? A GCM is a manifold that can encode its own computable
properties. A single KTH can qualify as a GCM. A lattice of KTH is also a GCM—just with more
computing capacity. Even a braided, knot-theoretic, topological computer could count, if one could
define suitable Σ and Φ over it. That said, the required asymmetries make such encodings difficult in
practice.

14

3.2 Geobits—Bits, Geometric Bits, and State Space

Definition 3.2 (Geometric Bits). A geometric bit (“geobit”) is an element s ∈ SGCM, where SGCM

is a finite set of equivalence classes of embeddings of computable manifolds in Rn, modulo ambient
isotopy and global symmetry.

There exists a group G acting transitively on SGCM, such that the pair (SGCM, G) defines a discrete
geometric state space. The group action is isomorphic (as a group action structure) to a subgroup of
the rotation group SO(n).

Let G be a GCM that supports discrete encoding of state via symmetry-constrained transformations.
A geobit is the minimal encodable unit of state in G. It may be represented as an n-tuple:

s := (χ, ω, p) ∈ X × Ω× P,

where:

X is the chirality space, typically {L,R}
Ω is the orientation space, typically {U,D}
P is an additional parameter space. This category is left intentionally open to accommodate future
encodings within SGCM.

These parameters together define a group structure—such as V4 ∼= Z2 × Z2—when the composite
operation χ·ω yields a closed, invertible group action under symmetry composition. All such operations
are assumed to be deterministic and belong to a finite automorphism group acting on the embedding
of the manifold in Euclidean space.

The discrete-time evolution of a geobit is governed by a deterministic group action:

δ : st 7→ st+1 = g · st,

where:

g ∈ Aut(G) ⊆ SO(n) is a symmetry group generator
δ is a computable, deterministic state transition function.

Now, let:1

(H1, H2, H3, H4) 7→ (00, 01, 10, 11)

where each Hn is a configuration from the KTH4 symmetry schema defined in Table 1, preserving
the order of the original type chart.

We assign bit values based on symmetry: if the chirality and orientation of a unit helices are the
same, assign bit value 1, if they differ, assign 0. This yields a total of 2 bits per KTH4 configuration.

Theorem 3.1 (Geobit Capacity Theorem). Let KTHO be a GCM whose internal structure is gov-
erned by an abelian group O, acting purely on intrinsic symmetries (i.e., excluding extrinsic spatial
transformations such as rotations or reflections). Then:

Geobit capacity = log2 |O|

That is, the order of the symmetry group O determines the number of encodable bits in the resulting
GCM under classical logic.

Proof. Let G be a finite group acting on a GCM configuration space, and let O ⊆ G be the subgroup
corresponding to encodable internal transformations (e.g., chirality, orientation). Define the number
of distinguishable states by:

Geobit capacity := log2 |O|

For example: - In KTH16 (governed by Z4
2), each helix can encode 4 bits total: 2 bits from chirality

and 2 from orientation. - In KTH4, this reduces to 2 bits, since we encode only global relationships

1Magic happens here.

15

(i.e., quotient by identity swapping and pairing symmetries). - In KTH2, assuming only orientation
is swappable, we drop to 1 bit per configuration.

Thus, a GCM based on KTHO can operate in binary, quaternary, or hexadecimal—depending on
the order of its encoding group O.

This leads us to a key structural pattern in the group progression. Let G act on configuration space
X:

Abelian case: If G ∼= (C2)
n, then |X| = 2n and each orbit is distinct.

Non-abelian case: If G is non-abelian, then |X/G| < |X|; the quotient space is smaller due to
collisions under conjugacy.

Remark 3.2. Why the focus on abelian vs non-abelian groups?
In an abelian group, every state can be constructed as the direct sum of independent generators.

That is, every geobit state is uniquely addressable by an n-tuple over Cn
2 . There are no collisions. The

total number of distinguishable geobit states is exactly 2n, and the encoding is non-redundant.
In contrast, a non-abelian group acts less cleanly. Its action “mixes” states: some group elements

act non-trivially, creating identifications among configurations. Orbits form under conjugation or
subgroup stabilizers, and the full state space becomes quotient-like. Redundancy becomes intrinsic—
some geobit states are indistinguishable under the group action. As a result, the number of distinct
encodable states in the orbit space may be strictly less than the order of the group itself.

This distinction becomes crucial when interpreting a GCM as a computational substrate: abelian
structure maximizes symbolic resolution, while non-abelian structure imposes constraints that must
be managed or exploited.

Table 4: Relationship Between Geobits and Their Groups

Group Order Dimension # Bits Comments
C2 2 2 1 Classical bit
(C2)

2 = V4 4 4 2 Base level 2-geobit
(C2)

4 16 4 4 4-geobit - Embeds in SO(5)
(C2)

8 256 8 8 8-geobit - Embeds in SO(9)
D4 8 3 ≤ 3 non-abelian, simple global swap
D4 ⋉ (C2)

4 128 ≥ 5 < 8 non-abelian, global rotations

Table 4 provides a reference encoding the relationships. Embedding will be explained later.

Remark 3.3. Given that there are 24 unique internal configurations of each KTH in the metric space
R4, we could, if desired, define each individual state as a separate base unit—using standard hex-
adecimal notation (e.g., 0x0 through 0xF). Although the notion of a hexadecimal-based computer is
intriguing, we will mostly focus on KTH4, which runs naturally in quaternary due to its Z2 × Z2

structure.
It is important to note that external point symmetries (such as global reflections or full rotational

symmetry groups) do not count toward the intrinsic geobit capacity in R4. These operations require
action on the global geometry and do not alter the intrinsic state of the unit helices. Thus, group
orders beyond 16 that arise from external symmetry do not increase state space in a computable sense.

Had we remained in R3, the maximum distinct internal configuration would be just 21, governed
by the group C2. Therefore, the dimensionality of the ambient metric space directly impacts the
maximum geobit capacity.

Definition 3.3 (Notation for Specific Geobit Information Capacity). Let G be a GCM associated with
a symmetry group O. Then the classical information capacity (in bits) of a geobit in G is defined as:

I(O) := log2 |O|,

where |O| is the order of the group of allowable geometric transformations within G.
We refer to this as an “n-geobit”, where n = I(O) gives the classical bit-equivalent capacity. This

naming system enables comparisons across different GCMs, as well as with classical and quantum bits.

16

For example:
I(C5

2) = 5 > I(V4) = 2.

Such comparisons allow us to define geobit inequalities or equivalences in information-theoretic terms,
purely from the group structure.

This notation is especially useful when working with layered geometries or hybrid encoding schemes
across different GCM classes.

The table 5 succinctly compares geobits with qubits via conceptual relations. 2

Table 5: Quantum vs Geometric State Space

Quantum Qubit Geometric Geobit

Bloch sphere SU(2) Polyhedra/Polytopes formed from SO(n)
Superposition Hidden Variable State System
Rotation gates (Pauli-X, Y, Z) Flips and rotations of substructures
Born Rule application collapses state Reading chirality/orientation collapses

state gradually
1 classical bit of storage Group order/metric space determines

classical bits of storage

Regarding the construction of a “Hidden Variable State System”. This terms demands some
explanation. Recall that the superposition of a qubit is written as state vector:

α|0⟩+ β|1⟩, |α|2 + |β|2 = 1

In contrast, a geobit has structured ambiguity via chirality and orientation coupling, as in our
case of the twin helix topology. It has no amplitudes, so it is deterministic but not locally resolved
until a fixed point is chosen. Knowing information about one side of the geometric substructure helps
an observer narrow down the possible overall state of the entire system. So until one “reads” the
manifold, the configuration could be thought of as simultaneously “leaning toward” multiple classical
states. This resembles the what is known in physics as a hidden variable system.

Definition 3.4 (Hidden Variable State System and Notation). A hidden variable state system is a
state system in which the values of individual bits or local states may be inaccessible or indeterminate
from an external perspective, yet their configuration exerts structured, deterministic influence on the
global system. Information about the system increases as more local structure is revealed, with local
geometry shaping the overall state. From the outside it may appear probabilistic but the determinism
is fully set in the geometric configuration so as to not violate Bell’s Inequalities. Superposition-like
ambiguity arises not from true indeterminacy, but from our inability to fully resolve or observe the
internal geometry without disturbing it.

Definition 3.5. Notation for Hidden Variable State System we define a Hidden Variable Ket (“HV-
ket”) to be a geometric computational state descriptor of the form

|α|β⟩G

Where:

α is the classically accessible bit configuration, potentially masked
β he hidden morphism or transition operator responsible for the current or next state
G the governing group or groupoid of allowable morphisms

I have chosen this |α|β⟩ ket-style notation in the spirit of following the tradition of qubits, but with
internal delimiters in the ket to show that unlike in qubits, in this case α and β are not two separate
vectors.

2Recall Holevo’s Theorem.

17

Example 3.1. Say we have HAB . We are starting out operating in C4
2 . We know that the chirali-

ty/orientation of HA is Right/Up. Arbitrarily we define Right/Left handedness = 1/0 and Up/Down
orientation = 1/0. The bit structure is sequential with respect to the unit helices.

|CA, OA, CB , OB |β⟩C4
2

To avoid confusion in α we explicitly include masked bit unknowns as X in the visible classical state.
One can imagine a scenario where we knew the orientation of both helices as Up but not their chirality.
It would be confusing to write

|11|β⟩C4
2

Without knowing what bits were what. So we can then write the state of HAB as

|11XX|β⟩C4
2

Let’s say we decided to measure HB , and found out it was Left and Down. Then we could write out
the updated 4-geobit as

|1100|β⟩C4
2

Since we know the full state the X ’s disappear. Though under V4 this would quotiented down to

|11|β⟩V4

However this is only possible since we know the state of all the bits. If we did not know the geometry
states of HB then the masks are inherited like such

|1X|β⟩V4

The V4 group traditionally uses the notation (a, b, ab, e) for its generators. Let’s say b flips the orien-
tation. We can write the β delimited part of the ket as a group action that is “primed” to cause a
state change in α on HA.

|11|bA⟩V4

And then we can also use arrows to display group actions on specific HV-kets.

|11|bA⟩V4

b−→ |10|e⟩V4

The identity generator being the “default” state of β after the group action.

3.3 FSM Encoding for KTH

Finite state machines (FSMs) are the building blocks of classical computation. An FSM consists of:

S A finite set of states
Σ An input alphabet
δ : S × Σ → S A transition function
s0 An initial state
F A set of final (accepting) states or outputs

Proposition 3.2 (FSM Geometric Embedding Theorem). In symbolic mode, every GCM admits an
interpretation as a self-contained FSM fragment, with its internal and boundary structure encoding
computational components.

Proof. The classical FSM tuple (S,Σ, δ, s0, F) may be represented geometrically as follows:

S ∼= X × Ω — Each unit helix has both a chirality and an orientation. The product X ×Ω forms the
finite configuration space of states. (If the GCM structure is larger, the state space grows as a finite
product accordingly.)
Σ — Inputs correspond to discrete, physically realizable perturbations or boundary signals. These are
not abstract symbols, but geometric interactions such as boundary twists, deformations, or coupling
signals. Allowed input types can be classified into a finite set, providing a physical basis for Σ.

18

δ — Transitions are governed by deterministic local dynamics under the construction rules of the
GCM. This includes interactions such as twist propagation, chirality flip, or boundary constraint.
These local rules induce a transition function δ that can be compiled into a classical FSM transition
table—except here, every transition is grounded in a geometric move.
s0 — The initial state corresponds to a fully masked or idle geobit—one with unknown (or fixed)
chirality and orientation. This is represented by a “vacuum” or “reset” configuration, and, if using
quantum-inspired notation, by an HV-ket such as |α|β⟩G, where α is the chirality configuration and β
the orientation.
F — The output is the final geometry of the GCM (or, in the lattice case, the geometry of neighboring
GCMs). While FSMs do not always have a unique output, in a composable computational system, the
final geometric configuration of the GCM serves as the computation’s result.

The following chart provides a convenient reference.

Feature Classic Computability Geometric Computability -
Symbolic Mode

Objects Strings, tapes, numbers Smooth manifolds, embedded surfaces
Operations Symbol rewriting, Turing steps Chirality and orientation flips
State Sequence of symbols Geometric configuration states of sub-

structures
Constraints Logical consistency Topological smoothness
Groups acting Discrete automata Discrete subgroups of diffeomorphisms

Theorem 3.3. A lattice of GCMs can achieve Turing completeness with symbolic communication.

Proof. Recall that
KTH4

∼= V4 ∼= C2 × C2

The universality of Rule 110—proven by Cook [3] and originally conjectured by Wolfram [4]—
establishes that a cellular automaton based on a cyclic tag system is Turing complete. Since KTH4

naturally carries two cyclic groups, its state space is sufficiently rich for this construction.
Define the state space for each KTH as a 2-geobit, encoding 2 classical bits of information.
Let L be a lattice of size J ×K, for J,K ∈ N. Each cell in L contains a KTH4 manifold (with unit

helices A and B), which communicates symbolically with its adjacent cells.
Pixelated Screen: Suppose there is a readout layer P , with one pixel per KTH. Each pixel Pi

displays as black or white based on chirality agreement:

Readout(Pi) =

{
■ if Chiral(A) = Chiral(B)

□ otherwise

Assume discrete time t ∈ N. At each time step:

1. Each cell Hi evaluates the orientation states of its neighbors Hi−1, Hi, Hi+1.

2. Applies the local update rule to determine the new bit bt+1
i .

3. Updates its Helix A orientation and/or chirality accordingly.

Transition rules for Rule 110 use the group generators as defined in Section 2.5.
Bit encoding:

bti ∈ {0, 1}
Orientti = (OrienttA,OrienttB)

Chiralti = (ChiraltA,Chiral
t
B)

where bti = 1 if Orient(A) = Orient(B), and bti = 0 otherwise.
We assume Helix B is fixed, and only Helix A may change.

19

Rule 110 update law:

δ(bti−1, b
t
i, b

t
i+1) =

{
1 if (bti−1, b

t
i, b

t
i+1) ∈ {110, 101, 011, 010, 001}

0 otherwise

Group actions update law:
bt+1
i = δ(bti−1, b

t
i, b

t
i+1)

If bt+1
i ̸= bti : d1

If bt+1
i = 0 : c1

Here, d1 and c1 are the group generators acting on Helix A.
Given that L is of sufficient size to simulate both “boats” and “gliders” (the minimal universal

structures in Rule 110), it follows that a lattice of KTH4 manifolds is Turing complete.

3.4 The GCM Lattice

Definition 3.6 (Kaminsky/GCM Lattice). A Kaminsky Lattice (“KL”) or GCM Lattice is a compu-
tational structure consisting of a collection of m discrete GCMs arranged in a lattice (e.g., Zd grid),
such that the system has a total geobit capacity of mn geobits, where n is the base geobit capacity
of each GCM. Communication between GCMs can occur via symbolic or quasi-fluidic interactions
realized as deterministic geometric deformations or flow.

Let:

G the configuration of the GCM lattice (the entire structure)
µ : G → ΣN a projection mapping from geometric state to observable symbolic state, with N = mn
total geobits (e.g., as displayed on a black/white screen)
Φ : Gt → Gt+1 the dynamical update rule, governed by group generators {c1, c2, d1, d2} or groupoid
morphisms {m0, ...,mx}
n ∈ N ∪ {∞} the geobit capacity per unit; m the number of GCMs; N = mn total geobits

The evolution of observable state satisfies

∀t, µ(Gt+1) = Φ(µ(Gt))

provided that G is sufficiently complex to sustain N -geobit symbolic or quasi-fluidic dynamics.

Remark 3.4. The architecture of geometric computability is decidedly a Non–Von Neumann one. A
KL is necessary to compute programs that are not trivial, since one can’t discretely read out results
on a single GCM with symbolic or quasi-fluidic computation, not without a projection layer or a
symbolic “slice”. In a GCM there is no separation of program and data, no instruction pointer, or
fetch–decode–execute cycle, the geometry is the computation. Computation is intrinsic, continuous,
but also spatially distributed. Parallels can be draw to neural fields or reaction-diffusion systems if
one requires an outside example.

Example 3.2 (Twin Helical Chain as Degenerate GCM Construction). Consider the following con-
struction for encoding an n-bit geometric computer within a single manifold. Start with a 2-manifold
homeomorphic to a solid cylinder, with one end smoothly rounded (“bullet-shaped”) and the other a
flat disk boundary. Place this horizontally along axis h1.

Deform this tube into a helical shape about a vertical axis v1. After a prescribed number of turns,
direct the tube laterally, then wrap it down along a second vertical axis v2, returning to h1. This
creates a Type 4 KTH with smooth joins at what were previously the helix apexes.

At the end of h1, adjoin a flat-disk boundary. You may now glue (via diffeomorphism) as many
such helical segments as desired along a single axis, each encoding a bit (geobit). Cap the chain with
a final bullet-shaped end.

The entire construction is a single, smooth 2-manifold a “Twin Helical Chain” encoding arbitrary
geobit capacity. However, because the closed loop twin helices must twist and untwist in tandem, their
chiralities and orientations are not independently manipulable, bit transitions are collective, not local.

20

Remark 3.5. Warning. The Twin Helical Chain is a single manifold GCM that is technically a
degenerate case since it achieves arbitrary geobit capacity though purely symbolic quantization only
in a single manifold, causing the lattice (which by definition recall is made a series of discrete GCMs)
to become 1× 1. Note that there is technically a second degenerate case of a KL consisting of a single
GCM in a 1× 1 matrix that still achieves infinite-geobit capacity. See discussion of the measurement
problem in section 5.10.

3.5 Visualizing the Shape of Computation

A regular bit naturally lives on a boolean number line, existing as 0 or 1. A qubit, as a state vector
naturally lives on the Bloch Sphere. Where does a geobit live? The answer is that it depends. Like
we established, the group operations determines the number of bits a quantized GCM actually uses.

In a GCM one doesn’t need complex amplitudes or wavefunctions, as the symmetry group of all
possible states resembles a “discretized” Bloch Sphere. The reader is encouraged to think about it
from a topological perspective, we are simply taking one 2-manifold and transforming it into another,
more quantized 2-manifold, but there is no change in genus, they remain homeomorphic.

I will now turn to a geometric source to create a state space visualization of the geobits of KTH4.
Polytopes can naturally be used to represent the state space of geobits. In this case the vertices of the
polytope are the KTH states, and the edges are the group transformations.

Starting with V 4, D4 they can fit easily into T,O. Although they encode the same number of bits,
O represents an additional flip bit and requires additional edges. This is in line with my previous
assertions on non-abelian bit spaces. Now however we require a subgroup for (C2)

4. Consider the
binary octahedral group 2O. This group, along with its brothers 2T and 2I, is a double cover subgroup
in the group of 3D point rotations SO(3). Given that we are primarily interested in representing
a computational group of 16, a group of order matching 48 is the best choice for clean subgroup
embedding via Lagrange’s Theorem.

Or, so it would seem. During the course of this work it became apparent that a known, but
not oft mentioned theorem causes a paradoxical result that prevents clean embedding of the KTH
computational group model in a state space congruent to the dimensions that its geometry naturally
lives in.

Proposition 3.4 (Minimal Embedding Dimension for KTH16 Symmetry Group). A faithful em-
bedding of the group KTH16 (with symmetry group (C2)

4) as a symmetry subgroup requires at least
SO(5).

Proof. The Sylow 2-subgroups of the binary octahedral group 2O (a double cover of the octahedral
rotation group in SO(3)) are isomorphic to the generalized quaternion group Q16 (the binary dihedral
group 2D4). Q16 is non-abelian and contains elements of order 8, while (C2)

4 is abelian and all non-
identity elements have order 2. Moreover, 2O only has one central element of order 2 (corresponding to
−I in SU(2)), whereas (C2)

4 requires 15 distinct elements of order 2. Therefore, (C2)
4 cannot embed

into 2O as a subgroup.
One might expect SO(4) to be sufficient, since the geometry of KTH4 naturally lives in 4D.

However, the same limitation arises. In fact, a classic result [5] in the theory of compact Lie groups
now asserts itself. The maximal rank of an elementary abelian 2-subgroup that embeds in SO(n) is
n− 1 (up to conjugacy).

Hence, embedding (C2)
4 as a symmetry group requires SO(5) at minimum. Embedding (C2)

5 would
require SO(6), but such a group does not arise in the KTH progression, which becomes non-abelian
above order 16 due to the use of semi-direct products.

Therefore, the state space embedding of KTH16 necessitates a “dimensional jump”—manifesting
emergent 5D algebraic behavior, despite the geometric construction living in 4D. 3

To embed all three original computational groups, we consider the full symmetry group of the 5-
dimensional hypercube (the penteract), which is the Coxeter group B5. This group has order 25 · 5! =
32 · 120 = 3840. The relevant rotation subgroup, called the demipenteract, is D5

∼= (C4
2)⋊S5, of order

1920. This group contains the diagonal (C2)
4 symmetry and subgroups isomorphic to D4 and V4. The

demipenteract has 16 vertices and provides a rigorous setting for realizing our algebraic structures in
the context of an actual Lie group.

3See Feynman’s Lectures on Computation [6, p. 111].

21

Since it is not possible to faithfully visualize a 5-dimensional shape, we settle for visualizations of
V4 and the regular tetrahedral group T (of order 12, embedded in SO(3)).

In these visualizations, the polyhedral points correspond to the allowable states of the GCM, serving
as the vertices of a 3D Cayley graph. The edges of the polyhedron represent transitions between these
states. Figure 4a displays such a rendering, with colorings chosen to highlight these symmetries.

Remark 3.6. This “discretized” Bloch sphere can be constructed by representing the state space T
as a spherical tessellation. In this approach, each vertex corresponds to one of the four fundamental
geobit states, while edges represent single group-symmetry operations, and faces correspond to minimal
closed loops of these actions. Notably, only four colors are required, one for each geobit state, making
the discrete structure explicit. This construction provides a visual and combinatorial analogue of
the quantum Bloch sphere, tailored to the discrete symmetry of the geometric bit model. Figure 4b
illustrates this method. This discrete tessellation highlights the analog between the continuous state
space of quantum systems and the finite, symmetry-driven state space in geometric computation.

(a) V4 Bit Group as a 3D Cayley Graph
(b) A “Discretized” Bloch Sphere - V4 in (2 3 2)-
sphere Form

Figure 4: Different Representations of the V4 Group.

This spherical tessellation is composed of congruent Schwarz triangles, the specific numbering here
is (3 2 3). All which are spherical triangles characterized by angles of (π3 ,

π
2 ,

π
3). The vertices of these

triangles on S2 correspond to the points where axes of 3-fold, 2-fold, and another 3-fold rotational
symmetry of the tetrahedron intersect the sphere.

Remark 3.7. The tetrahedral structure of the V4 GCM state space is notable in light of results by
Baez [7], who observed similar collapses in the quantum geometry of 3D vs 4D tetrahedra. However, in
our case, this structure emerges entirely from combinatorial flow logic, with no reference to spin network
quantization. This suggests a deeper relationship between geometric expressiveness, computational
state space constraints, and the topology of state polyhedra—one that may precede quantization
itself.

3.6 The Geometry of Logic

GCMs can encode not only classical binary logic, but also three-valued logic and fuzzy logic. This is
accomplished by introducing a third value to represent uncertainty, which is implemented by modifying
the join angle between unit helices. This geometric logic can take two main forms:

1. Ternary / n-ary logic: Bits take values in {0, U, 1} (with U an “undecided” value not com-
puted, but defined on [0, 1]), or more generally in {0, 1, . . . , n− 1} for n-ary logic. For example,
pentary logic uses values 0 through 4.

22

2. Fuzzy logic: Bits may take values in {0, P, 1}, where P is a real number in [0, 1], computed
by a function such as f(θ) = cos2(θ). The specific choice of function f determines the logic’s
behavior and can be tailored to computational requirements.

If the tangent surface between the two unit helices at the glue joint remains non-singular, then
helices may be joined at arbitrary angles—not just 0◦ or 180◦. This flexibility enables both n-ary and
fuzzy logic encodings. For instance, simple three-valued logic is realized by a “trinary join” determined
by a function

f : (n · 120◦) 7→ {0, U, 1}

where n indexes the n-ary digit system, running from 0 to n − 1. All angle measurements are taken
from the positive z-axis, proceeding clockwise.

So far, we have deliberately excluded infinite groups from our analysis, for two distinct reasons:

1. Allowing arbitrary join angles breaks the natural algebraic group structure of KTH4. Closure
under group operations is lost when joins are not restricted to a finite set.

2. The cross section of unit helices would be forced into a single conic (the circle), limiting geometric
expressiveness and precluding the use of ovals or more general curves.

Both forms of logic, however, induce separate geometric, algebraic, and computational trade-offs.
Three- or four-valued logic preserves finite group structure, since 120◦ or 90◦ rotations allow for finite
algebraic closure. Fuzzy logic, by contrast, requires infinitesimal join rotations and destroys all vestiges
of finite group structure, in addition to enforcing geometric isotropy.

Remark 3.8. Given that there exists a fine-grained tradeoff between the capacity for geometric expres-
siveness, algebraic group closure, and logical computational power, this suggests the existence of
a conservation law. To draw a lightweight analogy—this similar to Noether’s Theorem of Conser-
vation but for geometrical computational logic. I do not equate strict equivalence, as doing so with
Notherian analogies without the presence of the correct algebraic structures (i.e. Lagrangian physics)
is inherently dangerous. See Baez [8].

Lemma 3.5 (Geometric Logic Conservation Lemma). For any GCM G, there exists a conservation
law between its algebraic and geometric computational capacities. Specifically, there is a constant K
such that

C(G) + E(G) ≤ K

where C(G) denotes the algebraic closure of the logic gate set induced by G (i.e., which logical compo-
sitions remain valid under repeated joins or symmetries), and E(G) denotes a measure of geometric
expressiveness (e.g., the number of distinct cross-sectional geometries supported by G). The constant
K is determined by the topological and group-theoretic invariants of the system.

One path becomes a clean, algebraic infinite-state computation model. The other path devolves
into an increasingly purely geometric analog, continuous processor. A KL made of KTH4 sits at the
cusp of this tradeoff. Its geometric expressiveness is actually quite high—as we will see. In classical
physics, symmetry preserves energy and momentum, but Lemma 3.5 in GCT preserves computability
and algebraic closure within a tightly constrained topological economy.

Remark 3.9. The essential point is that the symmetry of the system’s configuration space directly
induces an invariant quantity in the system’s dynamics. Every symmetry break in topology introduces a
logical ambiguity, and vice versa. Although it is difficult to visualize given we have only derived a single
form of GCM, one can imagine higher order manifolds where can you deform the joint outright into
asymmetric 1-manifolds. These higher order manifolds would devolve into pure fluidic computability,
leaving logic altogether and entering increasingly abstract and chaotic forms of analog computation.

Example 3.3. Technically, any finite symmetry group of rotations of the circle, Cn ⊂ SO(2), enables
n-ary non-Boolean logic in geometric computability. For instance, one can define a 5-valued (pentary)
logic using C5—the cyclic group of order 5. More generally, we encode n-ary logic as follows.

Let x ∈ {0, 1, . . . , n− 1} be the index of the rotation step, and mx the associated logical value.

f : x 7→ mx, mx ∈ Ln, x ∈ {0, 1, . . . , n− 1}

23

where
Ln = {ℓ0, ℓ1, . . . , ℓn−1}

and the geometric correspondence is given by

θx = x · 2π
n

so the angle θx represents the logical value mx.
Thus, a rotation of the helix by θx encodes the logical value ℓx, allowing n-ary logic representation

via angular encoding. This mapping may be compactly written:

f(x) = mx = ℓx, θx = x · 2π
n

Table visualization:
θx Logical value
0 ℓ0
2π
n ℓ1
...

...
2π
n (n− 1) ℓn−1

Definition 3.7 (Orientation Bit Assignment for n-ary Unit Helices). Let vi be the axis of symmetry
of helix i, and let ẑ be the reference axis. For n-valued logic, the orientation bit bi is defined as

bi =

⌊
n

2π
arccos

(
⟨vi, ẑ⟩
|vi|

)⌋
, bi ∈ {0, 1, . . . , n− 1}

This generalizes the original ternary mapping formula, allowing the angular state of a helix to
directly encode n-ary logic. The intrinsic property of a helix—its capacity to twist through any given
space—ensures that orientation is always well-defined via its internal symmetry axis.

The following table helps organize our models again showing the relationship between join symmetry
and the resulting system that comes as a result of it.

Geometric
Expressiveness Join Symmetry

Algebraic Closure
Group Result

Extreme 0-fold Diff(M) (Zero) Computational gauge field

High 1-fold (360◦) C1 (Trivial) Geometric analog logic flow

Medium 2-fold (180◦) C2 Classic boolean logic gate

Low 4-fold (90◦) V4 Quaternary logic gate

None n-fold (Infinite) SO(2)/C∞ (Lie) Algebraic fuzzy analog logic flow

This pattern reveals an astonishing phenomenon: at the extremes, logical computational flow
manifests in two analog forms—one chaotically geometric, the other excruciatingly algebraic. This
suggests that low-value n-ary logic, such as boolean logic, constitutes a kind of logical habitable zone
where real machines can function in physical space. The analogy to Earth’s own habitable zone in the
solar system is intentional.

It is not simply a quirk of engineering that noise and error rates make n-ary processors difficult
to realize in practice. Even in an idealized, noiseless world, n-ary logical computers are “sandwiched”
between two analog extremes. The physically stable and computationally tractable zone is inherently
narrow.

For n-ary logic, the cross section of the KTH manifold can be any smooth closed manifold with
at least n distinguished points on its boundary that realize the requisite logical “angularities.” There
are, of course, infinitely many such shapes. The primary family consists of sinusoidal perturbations
(“clovers”), whose cross sections can be globally smooth and are easily visualized in polar coordinates—
see Figure 5b.

However, one can readily imagine more expressive cross sections that realize the required angular
structure but offer even richer forms of expressiveness. Figure 5a illustrates such alternatives and
compares expressiveness across different logical regimes.

24

(a) Expressiveness in Binary vs Hexidemical (b) n-logics in Cross Section Form—3,4,5-ary

Proposition 3.6. The set of all closed, sufficiently smooth 1-manifolds in R2 reduces to the circle
when subjected to arbitrary rotational symmetry constraints.

Proof. Consider a general sufficiently smooth closed curve in polar coordinates, which can be expressed
as a Fourier series:

r(θ) = a0 +

∞∑
k=1

[ak cos(kθ) + bk sin(kθ)].

Suppose the curve is required to be invariant under rotation by 2π/n for some integer n > 1:

r(θ + 2π/n) = r(θ) ∀ θ.

This constraint eliminates all terms except those where k is a multiple of n, so only terms cos(knθ)
and sin(knθ) can remain for integer k.

As n→ ∞, the only nonzero term that can survive is the constant a0. Therefore, in this limit, the
curve reduces to

r(θ) = a0,

which is a circle. Thus, under arbitrarily high-order rotational symmetry, the only possible closed
1-manifold in R2 is the circle. This follows from Lemma 3.5.

Definition 3.8 (Geometric Expressiveness). Let F1 denote the space of all smooth, closed, simple
curves (or hypersurfaces) in Rn, parameterized up to some fixed regularity (e.g., finite-degree trigono-
metric polynomials, or a suitable Sobolev space). Let Gn be a symmetry group (e.g., the cyclic group
Cn of order n), and let Fn ⊆ F1 be the subspace of shapes invariant under the action of Gn.

We define the geometric expressiveness at symmetry level n as the normalized dimension

E(n) =
dim(Fn)

dim(F1)
,

where dim(·) denotes the functional dimension (e.g., the number of independent Fourier modes up
to a fixed cutoff, or the dimension of a relevant function space). Thus E(n) ∈ [0, 1] quantifies the
proportion of the full shape space available under the symmetry constraint.

Let D(n,K) denote the dimension of the space of trigonometric polynomials of degree ≤ K and
n-fold symmetry:

D(n,K) = 2

⌊
K

n

⌋
+ 1,

where the formula counts both cosine and sine harmonics, plus 1 for the constant. As n increases for
fixed K, D(n,K) decreases in a stepwise fashion.

For finite K,

E(n) ≈ 2 ⌊K/n⌋+ 1

2K + 1
.

The set of all 2π-periodic, smooth functions is infinite-dimensional. The subset of n-fold symmet-
ric, smooth functions is also countably infinite-dimensional, but it becomes increasingly sparse as n
increases. In the limit as n→ ∞, E(n) → 0; the relative dimension shrinks to zero.

Furthermore, the total L2 variation of r(θ) from a constant also decreases as n increases, since
the only possible deviations are high-frequency harmonics, and these are increasingly penalized by the
requirement of smoothness.

25

Remark 3.10. This is the essential phenomenon as the size of the rotational symmetry group grows.
Once the symmetry group becomes continuous, the logic of the system becomes identical with its
geometry. Note that this is not merely a clever representation: the computation and the manifold are
outright one and the same. This is the core idea of geometric computation, and it is why such systems
can, in principle, exceed the computational power of a Turing machine—first by leveraging infinite
algebra, then by accessing infinite geometry. The inevitable result is that “fuzzy logic” in this setting
naturally leads to a computational space governed by a compact simple Lie group.

Conjecture 3.7. Manifold Expressiveness/Symmetry Tradeoff. Let G be a finite or compact Lie group
acting on Rn. Let S be the set of all smooth, closed hypersurfaces in Rn invariant under G. Then the
functional dimension of S (in a suitable topology) is non-increasing as the order of G increases, and
reduces to 1 (the sphere) for full rotational symmetry.

This conjecture is a natural extension of the principle illustrated by explicit examples in this
work to n dimensionality. Imposing higher degrees of symmetry through group actions systematically
reduces the diversity of admissible geometries, ultimately constraining S to the family of n-spheres
under maximal symmetry. While a complete proof is not presented here, it seems well within reach
using established methods from representation theory and algebraic geometry. If established, such a
result would clarify why only a restricted class of manifolds (such as those with limited symmetry) are
suitable as GCMs.

Remark 3.11. Such a relationship is all well and elegant. But at this point the reader may be ques-
tioning what precisely the point of “geometric expressiveness” is. Why not make all cross sections a
circle? The shape of the actual helices does not matter for the purposes of classical computation in so
far as the manifold remains smooth. This is a valid point, but serves to illustrate that in the symbolic
mode of operation the true geometric versus algebraic tradeoffs cannot be fully realized. It is only as
we move into the next steps of computation that the implications become clear. For now it is taken
as is.

Definition 3.9 (Algebraic Verifiability). Let G be a GCM, and let O = Sym(G) be the maximal
group of algebraic symmetries acting faithfully on G. The algebraic verifiability V(G) is a normalizable
measure of the size and structure of O, representing the ability to distinguish and verify discrete
computational states within G. For a finite group,

V(G) = log2 |O|

A high V(G) corresponds to many, clearly distinguishable algebraic states (e.g., quaternary, hexadec-
imal), while lower V(G) reflects fewer verifiable states or continuous/chaotic flows. For infinite or
Lie groups, V(G) can be defined via the rank of a maximal discrete subgroup or another appropriate
algebraic invariant (e.g., dimension of a maximal abelian subgroup).

It is now that we approach the bit space governed by chirality. While orientation in GCMs sup-
ports arbitrary n-valued logic through the structure of discrete rotation groups Cn, chirality remains
fundamentally locked to ternary. The only values available are left, right, and a degenerate unknown
state where torsion itself vanishes. Imagine if you will, a solid but smooth ended toroidal elbow, a
paradoxical helix with no twist. It simply extends outward for a short while from the glue joint and
then turns bends at a smooth 90◦ angle. It is an inflection point between chiralities.

Definition 3.10. Chirality Inflection Surface. Any twin helical manifold made of opposing chirality
unit helices can be achiral, even though the unit helices on either side of the glue joint are not. The
twin helix contains two chiralities within a single manifold canceling each other out. The point at
which χ = 0 is termed the Chirality Inflection Surface.

Remark 3.12. The idea of a chirality inflection surface or point is a fascinating subject. These are by
definition are endogenous to KTH Type 1 and 2. If fluid followed from the top of a KTH Type 1 to the
bottom, it would start with a certain angular motion defined by the first chirality but eventually switch
and exit with angular motion defined the opposite. I have provided a definition, but the richness cannot
be fully explored given the constraints of this paper. As a soft proof sketch—let us imagine there exists
a bijection β between all points on unit helices HA ↔ HB such that every point is symmetric to some
shared θ. Yet KTH is a smooth manifold, despite chiralities being scalar values. Then via Intermediate

26

Value there must be some point where χ = 0 as you travel the full length along this bijection, having
chosen two points. One at the apex of HA that is traveling to the apex of HB and vice versa. This
surface happens at the glue joint of HAB .

This explicit geometric sacrifice embodies Lemma 3.5 yet again. Greater logical expressiveness at
the expense of geometric sharpness. The resulting manifold supports ternary logic in the chirality
subspace, note that is not merely masked/unread (“X”) values of the hidden variable state system.

Even in higher dimensions, no known geometry allows for a richer chirality logic within a single
connected manifold. Any attempt to construct such a system merely produces additional degenerate
regions, not genuinely new logical values. The U position in the chiral space is a sort of “smooth
singularity” 4 an inflection point between winding and unwinding. This asymmetry reflects the deeper
topological distinction between angular (periodic) and chiral (binary with singularity) symmetries.

Remark 3.13. These changes however causes a shift in the overall group structure. The logical state
space of the digit architecture can be generalized beyond binary logic by promoting the orientation
bits to n-ary via the cyclic group Cn, and the chirality bits to ternary via C3, representing left, right,
and degenerate states. The resulting maximal group structure then becomes (Cn)

2 × (C3)
2 but more

importantly it remains abelian, as all constituent groups and their product are abelian. This structure
preserves the computational advantages of commutativity while vastly increasing the expressiveness
of the geometric logic system. That way these new “ternary × n-ary groups” also do not violate the
previous laws we derived regarding both the abelian vs non-abelian digit space, and state space group
embeddings.

Example 3.4. So if we so pleased, taking fully advantage of all the features we defined so far, we could
construct a GCM that stored its n-ary digits under the structure

|U014|β⟩(Z15)
2

and defined operations as such like

|U014|(d2)B⟩(Z15)
2 d2−→ |U015|e⟩(Z15)

2

as an example operation to rotate unit helix B by 72◦. The arity is such that chirality digits are
ternary (0, U, 1) and orientation digits are pentary (0 − 5). This technically allows for the use of two
different systems of logic in a single computational object, a computability process that can natively
encode a heterogeneous logical structure.

Going further we would also do well to admit that a GCM is at its core, not necessarily constrained
by purely symbolically derived bits all. It can model variable digit structures with extreme ease but the
exact number of bits in a GCM is itself a question of quantization. How exactly the overall geometric
structures are quantized determines the accessible number of bits and, depending on how one chooses
to quantize, the structure goes from completely discrete to completely analog. It is in effect a “bridge”
between the discrete and analog computational worlds. But there are more variables at play once
vectors get involved.

3.7 Syntax, Semantics, and Computation: A New Synthesis

Remark 3.14. Warning. The remainder of this section ventures into metamathematical and existential
territory, tracing the consequences for science, technology, and society at large.

It is at this point we now execute a bold new synthesis that leverages three distinct but convergent
lines of thought, in addition to our own.

First, starting with Mattias Felleisen and Amr Sabry’s [9] theory of programming language expres-
siveness to provide a rigorous distinction between micro- and macro-expressiveness—the creation of
new local states versus new global, compositional structures.

Second, Tae-Danae Bradley’s [10] categorical semantics, which unifies the compositional structure of
meaning in language and quantum information, provides the tools to model the meaning of computation
as an emergent, compositional object: meanings are assembled from parts, but the whole can exhibit
contextuality and entanglement—properties essential to macro-expressiveness.

4I know this is imprecise, it is intended here to suggest a topologically regular but functionally critical transition
point.

27

Third, our own geometric and groupoid-based models turn these semantic notions into concrete
objects: GCMs and decorated paths, where composition, context, and macrostate emergence become
visible and manipulable. Here, macrostates are equivalence classes of geometric or computational
microstates, and macro-expression corresponds to the ability to traverse or construct new geometric
cobordisms.

Finally, by connecting these explicit geometric models to Baez and Dolan’s cobordism hypothesis,
we embed computation itself into the universal framework of extended TQFTs see ([11] for background
and how it plays out is in 8). Our constructions realize semantic tradeoffs—between expressiveness,
verifiability, and tractability—as geometric and categorical phenomena. In this sense, we do not merely
interpret computation using geometry, but construct the geometry of computation itself—linking the
micro/macro-expressiveness of programming languages, the compositional semantics of meaning, and
the universal classification of processes given by higher category theory. The following definitions will
define the landscape of computational operational semantics:

Definition 3.11 (Microstate). Let S be the state space of a computational or geometric system (e.g.,
a configuration of a GCM, a set of logical variables, a geometric arrangement of bits, etc.).

A microstate is a single, completely specified, fine-grained configuration of the system—an assign-
ment of all local, atomic variables and parameters that determine the system’s instantaneous state
with maximal precision. Examples:

• Geometric Computation: a microstate is the exact assignment of chirality, orientation, flow, etc.
to every helix in the lattice.

• Programming Languages: a microstate is the full set of variable values, stack frames, program
counter, etc., at a given step of execution.

• Thermodynamic System: a microstate is the exact position and velocity of every molecule.

Definition 3.12 (Macrostate). A macrostate is an equivalence class of microstates, characterized by
some coarse-grained, collective, or emergent property or observable of the system.

That is, many distinct microstates may correspond to the same macrostate if they agree on certain
global features, summary statistics, or logical/physical invariants. Examples:

• Geometric Computation: a macrostate can be “all configurations with total chirality zero,” or
“all with the same winding number sum,” or “all corresponding to the same output under a
projection map µ.”

• Programming Languages: a macrostate can be “all states where a certain function is about to
be called,” or “all stack traces with the same call graph.”

• Thermodynamic System: a macrostate is defined by bulk properties like temperature, pressure,
and volume. Each macrostate contains many microstates.

Mathematically: If M is the set of all microstates, and ∼ is an equivalence relation (e.g., “has the
same projection under some observable”), then the set of macrostates is M/ ∼.

Definition 3.13 (Micro-Expression). A language extension is micro-expressive (with respect to a base
language) if every program written using the extension can be mechanically translated (i.e., compiled or
macro-expanded) into a program in the base language, without fundamentally changing the structure
of the program. The extension is just “syntactic sugar”—it may make programs more convenient to
write, but does not add true expressive power.

If for every program P in the extended language L′, there exists a mechanically derivable program
P0 in L, such that the semantics of P and P0 are equivalent, the extension is micro-expressive.

Definition 3.14 (Macro-Expression). A language extension is macro-expressive (or just “expressive”
in the sense of Felleisen/Sabry) if it allows programmers to write programs (or express control/data
abstractions) that cannot be reduced (mechanically or structurally) to the base language without loss
of power or change in semantic properties.

There exists at least one program P in L′ for which no equivalent P0 in L can be mechanically
constructed, i.e., the semantics of P is not achievable in L alone.

28

Felleisen and Sabry’s foundational work on expressiveness in programming languages provides a
rigorous semantic framework for distinguishing between micro-expressive and macro-expressive lan-
guage features. They define precise criteria for when a language extension is merely syntactic (micro-
expressive, or “eliminable by mechanical translation”) versus when it adds genuine new expressive
power (macro-expressive, or “semantically irreducible”). This distinction underlies much of modern
programming language theory, providing the intellectual basis for our definitions of micro-expression
and macro-expression, and by extension, for our broader semantic expressiveness tradeoffs in geometric
and computational systems.

Just as in programming, where certain language features permit the creation of behaviors not re-
ducible to simpler forms, in geometry the gluing of submanifolds can create new topological invariants—
if and only if the gluing is smooth (singularity-free). As the complexity of the system increases, the
possibility of singularities or obstructions to smooth composition rises, directly paralleling the limits
of macro-expression in computation.

Definition 3.15 (Verifiability). Let S be a computational or semantic system, with a set of properties
or predicates P defined over its states or behaviors. The verifiability V(S) is a normalized measure of
the system’s capacity to algorithmically decide, prior to or independent of execution (“runtime”), the
truth or falsity of nontrivial properties in P.

V(S) is the (normalized) cardinality or dimension of the set of properties p ∈ P such that there
exists an effective (algorithmic or algebraic) procedure to decide p(s) for all relevant s ∈ S, without
recourse to brute-force execution or exhaustive enumeration.

In more general (semantic, geometric, or topological) settings: V(S) can be defined in terms of the
number or structure of properties accessible to algorithmic, structural, or analytic verification (e.g.,
decidable invariants, checkable logical properties, or geometric signatures).

Verifiability is the system’s capacity to algorithmically certify nontrivial properties of its states
or behavior, prior to execution. In algebraic regimes, this can be measured by the size or rank of
the symmetry group distinguishing states in semantic or geometric regimes, verifiability reflects the
set of properties or invariants accessible to algorithmic or structural verification. High verifiability
corresponds to systems where many global or local properties can be decided by construction; low ver-
ifiability signals the presence of undecidable, chaotic, or non-algorithmic behavior. Micro-expression,
the power to generate or describe new microstates by local extension, is often correlated with veri-
fiability, but the two are not identical. Micro-expression is syntactic and generative, verifiability is
algorithmic and semantic. In maximally micro-expressive systems, local behaviors are easy to define,
but global, non-trivial properties may remain undecidable or unverifiable.

Here, Bradley’s recent work in categorical quantum probability and compositional semantics de-
scribes a passage from classical to quantum probability—constructing quantum-like meaning and be-
havior from classical, combinatorial data via category theory. This mirrors, in the semantic realm, what
geometric quantization does for physical systems: lifting classical structure to the quantum domain.

In our framework, the process occurs in reverse: we begin with deterministic, geometric models
of computation—objects whose logic is embedded in their physical, topological structure. By an-
alyzing the space of possible compositions, flows, and transformations, we find that the chaotic or
macro-expressive regime gives rise to algebraic and probabilistic behaviors that are indistinguishable
from quantum information theory. In other words, quantum structure emerges as the statistical or
compositional shadow of geometric computation.

Definition 3.16 (Tractability). Let S be a formal system (e.g., a programming language, a compu-
tational model, or a geometric computation system). Tractability is the property that there exists a
procedure (algorithmic or semantic) to:

• For machines: Execute or evaluate a statement/program/configuration in S with feasible com-
putational resources (e.g., polynomial time or some agreed practical bound).

• For humans: Understand, reason about, or verify the intent and behavior of statements in S
without overwhelming cognitive complexity.

More precisely: A property or decision problem in S is tractable if it can be decided or realized
with computational resources (time, space, etc.) bounded by a polynomial (or similarly “practical”)

29

function of the input size. A system is tractable if most of its intended computations and the pro-
cess of programming/understanding them fall within humanly-manageable (or machine-manageable)
complexity.

Tractability, in our framework, refers to the ease with which both a machine can execute, and a
human can understand or reason about, a computational statement in a formal system. Formally,
a property or computation is tractable if there exists an effective procedure—bounded by practical
resource limits (e.g., polynomial time, or manageable descriptive complexity)—to realize or verify
it. For a programming language or system of symbols, tractability is both a computational and
a social-epistemic phenomenon: the system acts as a Schelling point for shared meaning, enabling
programmers (or agents) to coordinate understanding and reliably predict system behavior. The
degree of tractability depends not only on algorithmic complexity, but on the alignment between the
system’s formal structure and the ways in which meaning is constructed and communicated among its
users.5

The categorical structure underlying these definitions will be explored micro-expressively in detail
in future work. Here we focus on explicit constructions, conjectures, and the motivation for the
framework, in order to maximize accessibility and highlight the new conceptual terrain. So with the
parts in place, we now can macro-express a new metatheorem:

Conjecture 3.8 (CORE THESIS: Expressiveness/Verifiability/Tractability (“EVT”)
Hypothesis). The conjecture formally comprises two parts:

(A) Unverifiability of Macro-expressive Systems. Any system of computation supporting macro-
expression is globally algorithmically unverifiable.

(B) Expressiveness/Verifiability/Tractability Trilemma. Within such a system, every deter-
ministic computational model is fundamentally constrained by a three-way tradeoff among expres-
siveness (geometric or semantic generality), verifiability (algebraic checkability or formal runtime
assurance), and tractability (algorithmic or computational efficiency). These attributes satisfy
the following trilemma:

No system can simultaneously maximize all three properties. For any given model, at most two
of the three can be optimized beyond a critical threshold, while the third must necessarily be
sacrificed.

Formally, the achievable combinations of these properties are bounded by a 2-dimensional simplex
in the space of attributes. The precise tradeoff is determined by the system’s local symmetries
and structural constraints.

This is the central motivating result of this work.6 It is the heart and soul of my philosophical
approach to understanding the nature of computation. It simply generalizes Lemma 3.5 to all compu-
tation. I contend that there exists a deep connection here at work between verifiable (“algebraic”) and
expressive (“geometric”) computational properties and that this applies to all deterministic computing
systems. I also contend that unlike conjectures such as the Church-Turing Thesis, this theorem is in
fact, provable via categorical construction, provided one makes explicit the categorical structures (e.g.,
cartesian closedness, enrichment, etc.) and operational definitions (e.g., what counts as “tractable”).
To give a proper analogy, this is essentially a generalization of Lawvere’s Fixed Point Theorem, but
reapplied to computation at large.

The key to understanding lies in Rice’s Theorem. This result is the natural consequence of the
first half of the EVT Hypothesis. The EVT Hypothesis takes the core concept that Rice identified
and situates it within a larger meta-framework that has so far been absent. I contend that there exists
a deep and enduring parallel between Rice’s Theorem and Godel’s Incompleteness. Rice’s Theorem
states that “All nontrivial semantic properties of Turing machine languages are undecidable.” Godel’s
incompleteness states “There will always be statements within a formal system that are true but

5If you are confused, I can assure you that you aren’t alone. The author thought he was creating a new tool for
computation—it turns out he actually ends up tripping over why groups of people have trouble creating shared systems
of meaning.

6I understand Yang-Mills is also important, but as far humanities computational day-to-day is concerned—my apol-
ogizes to physicists of the world.

30

cannot be proven.” Godel and Rice are in fact two sides of the same coin—one for math, the other
for computation. Yet this is not an immediately obvious connection. Godel only says that certain
truths within a formal system may be true but unprovable, but most of math is still quite safe. But
here, Rice is vastly more severe. All non-trivial properties are undecidable. If these two theorems are
related, then why then the impedance mismatch between them?

Mathematics Computation

Lawvere’s Fixed
Point Theorem

Missing
Metatheorem

Gödel’s
Incompleteness

Rice’s
Theorem

Is to...

Is to...

Explains Explains

Is to...

While computer science has long known Rice’s Theorem to be true, there has never been an explicit
formulation as to why this is the case. Computer scientists obviously acknowledge that many languages
are more stable in their behavior than others. But no systemic attempt has been made to explain this,
at least not in the same way that Lawvere did when he quietly saved mathematics by grappling with
the paradoxes discovered by Godel and Tarski.

In mathematics, axiomatic structure contains undecidability to rare, specially constructed state-
ments so most of mathematics remains safe and verifiable. In computation, however, the absence of
axiomatic constraints, and the inherent flexibility of programming languages, means that undecidabil-
ity is omnipresent. Inherent recursion means one is at the knife’s edge of diagonalization at all times.
This is the “impedance mismatch”. Computation is vastly more “dangerous” than mathematics, be-
cause it allows unbounded self-reference and unfiltered logical construction, while mathematics relies
on the ZFC to maintain order.

Hence, part of the problem lies with binary logic itself. Recall the chart of n-logics generated from
join symmetry 3.6. Binary logic is extremely flexible, when the spectrum of computational logics as
a whole is considered. It teeters on the edge of chaos. One is a single false step into non-abelianism,
though it provides ample opportunity for expression. If computers could express higher forms of n-ary
logic easily, we might be able to reign in expressiveness with verifiability in hardware and defeat Rice’s
Theorem, but the laws of physics and the constraints of engineering decrees this shall not be so.

But binary logic however is not unique in its sins. Ternary or quaternary is nearly just as dangerous.
One would have to go fairly high up the chain of n-ary logics to reach a logic restrictive enough to halt
expressiveness to such a degree that you could avoid self-expression in computation and stop Rice’s
Theorem cold in its tracks. Normally this is done with total recursion in proof assistant software, not
hardware, using Coquand’s Calculus of Constructions. 7 But wielding the power of type theory to its
fullest potential means the computational process that one would be left dealing with would be limited
to programming in a highly restrictive manner. In type theory one has micro-expressiveness, but not
macro-expressiveness.

Lawvere [12] identified that fixed points in category theory create endomaps which inevitably
cause a slew of self referential paradoxes. In the EVT Hypothesis, the fact we must confront is that
the “fixed point” is simply the computation itself, or rather the ability for any system of computation
to reproduce itself logically generating self reference. Not every macro-expressive construct generates
new fixed points, but most do. Turing made this assumption when he proved the halting problem.
Turing’s diagonalization in the proof of the halting problem is a powerful construction, but it is not
a meta-theorem, it is a recipe. Unlike Lawvere’s Theorem, which explained the inevitability of self-
reference and undecidability in logic, there is no explicit meta-principle in computability theory that
accounts for diagonalization in all computational systems. Felleisen, whether implicitly or explicitly,

7Imagine if you will, an n-ary geometric computer as being essentially a hardware proof assistant—it has infinite
micro-expressiveness so every state can be internally represented. Here, we can reverse the Church-Turing Thesis—the
hardware actually refuses to compute anything besides the program.

31

uncovered this when he argued for macro-expressiveness as the defining metric of expression in his
seminal 1991 paper on the subject [13].

The EVT cleanly explains the odd “dual nature” one sees in functional programming languages.
One side offers strict typing with meta-theoretical certainly during runtime but but meta-linguistic
restrictiveness at compile time. The other side with dynamic typing offers meta-linguistic expression
in construction but no meta-theoretical certainty at runtime. Attempts have been made to bridge the
gap from both sides (MetaOcaml is to Coquand, as Typed Racket is to Felleisen), but—use one too
many features of these powerful languages and they can run into instability. An explicitly stated
conservation law for computational behavior explains these difficulties.

The reason this meta-theorem has gone unformulated is that its essential tradeoff has long been
hidden in plain sight—embedded in the very architecture of classical computation we all use in our
day-to-day lives. The Von Neumann architecture, by treating program and data uniformly and allow-
ing maximal flexibility (any memory can store code or data, and programs can modify themselves),
enables extraordinary expressiveness. However, this very flexibility comes at the cost of global verifi-
ability: it becomes almost impossible to reason about or prove properties of the system as a whole.
When the hardware is instead fixed algebraically—restricting the set of possible states, operations,
or transitions—the system gains predictability and becomes globally checkable, but loses expressive
power.

But why the curve? There are many computational processes that are both low in expressiveness
but also low in verifiability. An example being the infamous “Turing Tarpit” where everything at once
is possible, but doing anything is nontrivial. In the same way that Rice’s Theorem must be harsher
than Godel’s Incompleteness to cover the whole range of computational behaviors, so to must my own
analogue to Lawvere’s Fixed Points cover more conceptual ground when dealing with entire systems
of logic. My contention is that Lawvere’s construction on its own does not have the power
to capture the the issue of diagonalization within computation. He was focused on explaining
the issues with mathematical logic, not computation as a whole. If computation is merely considered
micro-expressiveness than yes, Lawvere is sufficient for explaining the Halting Problem, but not its
more generalized cousin—Rice’s Theorem. Hence I do not believe it to be conceptually complete with
regards to the actual nature of computation as set out by Kleene and later Felleisen.

This is why now we on the other hand must grapple with two axes, not one. This why I use only a
quasi-Noetherian framing with regards to local, not global symmetries with particular computational
models. In future work I will publish my initial results on modeling this relationship in classical
computing and drag it to light, but such work vastly outstrips the scope of this paper. The key
difference for those readers wondering however, is that in a Von Neumann machine, the most important
local symmetry is within the skull of the computer programmer.

This is why this digression must be included here. In GCT, modeling EVT relationships becomes
much more tractable, since there is no separation between logic and memory. A KL is an idealized
version of a Non-Von Neumann architecture existing on substrate defined purely by math. 8 Here
one can see how the operational semantics forcibly deforms the computational substrate, and model
how increasing algebraic closure eats away at the possible expressions in geometry with increasingly
verifiable but near infinite amounts n-ary logic with every increasing bit.

Remark 3.15. Regarding tractability, hardware is not truly a concern for geometric computation. If
one had a stacked array of KLs they could essentially form a hyperaware, omniscient FPGA capable
of self-synthesis and logical introspection, switching between discrete and analog computational modes
at will. In this regime, even the concept of a universal compiler or processor breaks down: every
“program” defines its own hardware. In in real life where there exist physical corollaries to Rice’s
Theorem and Lawvere’s Fixed Point, natural limits on the engineering of computation itself in the
form of finite, well-defined instruction set architectures, clear separation between compilation and
execution, static boundaries between code and metacode. As a result, although I must state the entire
trilemma as I have discovered it, I will not be exploring tractability as much in this paper, as it is
more of a physical constraint.

As Baez writes in Getting to the Bottom of Noether’s Theorem [8]

8Dare I say—potentially the canonical one as a complement to the Turing Machine that has so far been missing for
several decades.

32

“Atiyah [14] warned us of the dangers of algebra: “ ...algebra is to the geometer
what you might call the Faustian offer. As you know, Faust in Goethe’s story
was offered whatever he wanted (in his case the love of a beautiful woman), by
the devil, in return for selling his soul. Algebra is the offer made by the devil to
the mathematician. The devil says: I will give you this powerful machine, it will
answer any question you like. All you need to do is give me your soul: give up
geometry and you will have this marvellous machine.”

Baez notes that “While this is sometimes true, algebra is more than a computational tool: it lets
us express concepts in a very clear and distilled way.” Although the striking resonance between these
words and my own argument may be coincidental, it is nonetheless unsettling. I do agree with Baez
that the best of mathematics occurs when the two are brought together to work harmoniously, but
my contention here is that computability is unfortunately one particular case of the bargain where the
devil cannot not be cheated. Under the watchful eye of the ZFC, algebra and geometry can play nicely
together, but the act of computation creates a bottleneck. Though, I must acknowledge that Atiyah
himself likely never anticipated for his words to be used in this way.

Even so, I fully acknowledge my claims here border on being outright inflammatory—and go against
multiple trends in current computer science, especially programming language research. Still, given
the implications for humanity at large with our increasing dependence on software, I will say that
the failure to understand the underlying metamathematics of this phenomenon and of computation at
large on a categorical level is rather unfortunate. And I am not alone in this sentiment. As Joshua
Meyers [15] writes:

From Turing machines all computations can be executed, just as from set theory
all mathematics can be constructed. But as category theorists, we know that a
particular set-theoretic implementation of a concept does not qualify as the essence
of the concept, since it could just as easily be implemented infinitely many other
ways. The true essence of a concept is its internal structure, and how it relates
to other concepts (its “external structure”, perhaps). Thus from the categorical
viewpoint, Turing machines do not succeed in essentializing computation any more
than von Neumann ordinals essentialize the naturals.

9

Remark 3.16. It is at this point I must pause, and sincerely apologize if this all may be a bit much for
you, dear reader, to stomach. One does not open a paper with a whimsical title about helices expecting
to receive a dialogue on identifying the deepest connections between math, logic and computation, in
such a soul crushing manner, no less. If it is of any consolation, the author shared such feelings when
writing this.

The convergence of categorical natural language theory and the abstractions of higher category and
∞-topos theory signals an emerging synthesis. That this validation of ur-metatheory should depend
on insights from a domain historically neglected—natural language, meaning, and learning—is a poetic
turn, and a fitting reminder that mathematics, like language, is ultimately a science of meaning and
structure, not just symbol and proof.

Our foray into n-ary and fuzzy computation however hints that the latent computational power
within geometric objects has yet to be fully unlocked. Let’s turn the key.

9For those readers not familiar with the philosophical background here, see [16].

33

4 A Kleene-Theoretic Approach to Foundations for GCT

Before proceeding further, I will rigorously establish GCT in the language of Kleene’s theory of partial
computable functions.10 Kleene’s formalism is particularly well-suited here, as it offers a foundational
framework for modeling computable processes that is platform-independent and does not rely on the
specific machinery of the lambda calculus. Moreover, the inclusion of partial functions and groupoids
fits naturally into this setting and prepares the groundwork for the following section.

Stephen Kleene’s pioneering work in the 1930s and 1940s established the modern theory of com-
putability, most notably through the definition of partial recursive functions. These form the mathe-
matical backbone of the classical model of computation, providing the foundations for Turing machines
and the Church-Turing thesis.

4.1 Fibered Kets and Tensor Products

In analogy with the HV-ket, we now introduce a “fibered ket” notation appropriate for geobits, as we
move beyond purely symbolic computation.

Definition 4.1 (Fibered Ket Notation for Geobits). A fibered ket is an element of the tensor product
space associated to a geobit g ∈ SGCM:

|α⟩ ⊗ |β⟩ ∈ HG

where:

|α⟩ is the classical projection—encoding observable chirality and orientation,
|β⟩ is the internal (hidden) state, which may include fluidic variables, topological twists, or other
degrees of freedom,
HG is a Hilbert-like geometric phase space in which the tensor lives, parameterized by the groupoid
G (for discussion of parametric groupoids, see Section 5.6).

The evolution of geobits is defined as a function on the tensor product space:

(|α⟩ ⊗ |β⟩) 7→ |α′⟩ ⊗ |β′⟩.

The fibered ket encodes both the observable and hidden structure of a geobit, and its manipulation
is analogous to taking products of vector fields. While the full interpretation of this formalism will
be developed in the following section, from this point onward we will treat a GCM as an object that
can be subjected to computational “flows”—idealized incompressible fluids represented by finite vector
fields. As this section unfolds, I will demonstrate how this notation fits naturally into the composition
and recursion schemes familiar from Kleene’s theory of partial recursive functions.

4.2 Partial Recursive Functions—Primitives and Composition

The partial recursive functions are built from three primitives:

Zero function - Z(x⃗) = 0
Successor function - S(x⃗) = x+ 1
Projection function - Pn

k (x1, . . . , xn) = xk

And three closures:

Primitive composition - h(x⃗) = f(g1(x⃗), . . . , gk(x⃗)) combines any of the above three functions
Primitive recursion - Given f(x) and g(n, y, x), define: h(0, x) = f(x), h(n+1, x) = g(n, h(n, x), x)
Unbounded µ-recursion - Define f(x) = µy[g(x, y) = 0] with the smallest y being that which makes
the function vanish. This allows search and potential non-halting in a computational process.

10I realize my order of exposition is unconventional; I chose to begin constructively, as it offers more intuitive grounding
for the reader.

34

These 6 operations define partial recursive functions everything computable by them is what we
now call computable in the classical sense. Let Gf denote the class of functions computable by a
GCM. I now construct a geometric interpretation of each PRF constructor. The primitives are trivial
to represent.

The Zero function is congruent to identity of the group, starting from an unread state of geobit
g in SGCM :

Z(x) = 0 ∼= |XI(G)|e⟩G
e−→ XI(G)|e⟩G

Or equally multiplication by the identity matrix of the vector field β

|α⟩ ⊗ |I⟩ = |α|e⟩

The Successor function is congruent to any substructure operation that manipulates one tuple
of geobit space:

S(x) = xi ∼= |α0|β⟩G
β−→ |α1|e⟩G

Where α ∈ (X,Ω, P) ⊂ g where P is any other element subject to quantization. 11

The Projection function is congruent to:

Pn
k (x1, . . . , xn) = xk ∼= Readout(Pi)

or any readout similar to the readout function from 3.3 that reads part of the overall tuple in g.
Geobits are discrete objects so this is taken as a given. While normally this would be the orientation
bits as they are the densest, readout can be defined as whatever makes sense for the computation that
is being modeled—as we will see helices can have rich geometric states.

Primitive Composition is defined as composite flow of transformations. There is an applied
transformation to the fiber |α⟩ ⊗ |β⟩ via a hidden variable, say flow rate:

|β⟩ 7→ |v(β)⟩

Then, the geobit is updated via a function of the fiber:

|α⟩ 7→ |s(α, v(β))⟩

Where: v(·): transforms the flow rate s(·): acts on the chirality, but depends on the output of v
such that:

v(x, y) =

{
+1 if y > 0

−1 if y ≤ 0

where y = v(β).

Example 4.1. We define the initial chirality |α⟩ = |+ 1⟩ and initial flow |β⟩ = |0.7⟩ so the total state
is: |+ 1⟩ ⊗ |0.7⟩

To apply the hidden transformation we can define v(β) = β − 1, as this is a stepped function that
just “slows down” at each step. If we apply v to the flow variable:

|α⟩ ⊗ |v(β)⟩ = |+ 1⟩ ⊗ | − 0.3⟩

To apply an update to the observable state, controlled by the new flow we use s to update chirality
based on the new flow rate:

s(α, v(β)) =

{
+1 if v(β) > 0

−1 if v(β) ≤ 0

Here, v(β) = −0.3 ≤ 0, so the new chirality is −1. The updated state: | − 1⟩ ⊗ | − 0.3⟩
Behind the scenes, the explicit matrix calculation when using tensor products works out to:

|α⟩ = (1, 0) (“left-handed”)
|β⟩ = (0, 1, 0) (“medium” flow)
Tensor product: |α⟩ ⊗ |β⟩ = (1, 0)⊗ (0, 1, 0) = (0, 1, 0, 0, 0, 0)

11Again, I don’t know if there are any other manifolds out there, I’m trying to keep definitions open.

35

Definition cases for Recursive Composition are defined as such. Let: G0 = F (x⃗) be the initial
geometric configuration and let Gn+1 = Gn▷Tn be the recursive case Where “right action” (▷) matches
the application of the next “move” to the current state, preserving the order of operations. It applies
a local transformation Tn, be it a twist, swap, or evolution, to the previous state. Each Tn is an
automorphism, an invertible transformation of the the manifold onto itself that represents a single
step of the geometric recursive process.

To demonstrate this state in fibered ket notation, let the state at step n be:

|Gn⟩ = |αn⟩ ⊗ |βn⟩

Where |αn⟩ is the observable and |βn⟩ is the internal variable.
The initialize we set:

|G0⟩ = |F (x⃗)⟩ = |α0⟩ ⊗ |β0⟩

Where F is the geometric “constructor” it picks the initial state either at random or by evaluating an
initial function or setting up initial twist/flow parameters.

Applying the recursive case means that each update is:

Tn = Tn(α)⊗ Tn(β)

a local transformation that can act separately or jointly on observable and hidden variables

|Gn+1⟩ = (Tn(α)|αn⟩)⊗ (Tn(β)|βn⟩)

Or, for more general transformations, Tn could be a coupled operation.
After k steps the state is

|Gk⟩ = (· · · ((|G0⟩ ▷ T0) ▷ T1) · · ·) ▷ Tk−1

This is congruent to basic recursion of the definition in PRF.

Example 4.2. Commutative operations with basic recursion. Suppose our initial state is:

|Ψ0⟩ = |left⟩ ⊗ |up⟩

Chirality swap and Orientation flip automorphisms respectively are:

C (left ↔ right)] := |Ψ1⟩ = (C ⊗ I) |Ψ0⟩
O (up ↔ down)] := |Ψ2⟩ = (I ⊗O) |Ψ1⟩

Composition becomes:
|Ψ2⟩ = (I ⊗O)(C ⊗ I) |Ψ0⟩

Follows into a final expanded form:
|Ψ2⟩ = (C ⊗O) |Ψ0⟩

Notice, that for these automorphisms, the order doesn’t matter as C and O act on different factors.

We interpret µ-Recursion as a geometric search process within the GCMs or lattice of GCMs.
Let:

Geometric Search - Construct a family of geobit configurations |Gy⟩, each representing a candidate
value y, via sequential application of a group action or local automorphism.
Halting Condition - Be the process halts if, for some y, the configuration |Gy⟩ satisfies a geometric
criterion such as set of symmetries or special region.
Partiality - Exist if no such configuration is reached, the process continues indefinitely, and the result
is undefined on that input.

Example 4.3. Infinite Loops in a minimal KL Suppose we have two neighboring GCMs (A and B),
each with:

|α⟩ as orientation (up/down)
|β⟩ as continuous flow rate

36

The full joint state then becomes:

|Ψ⟩ = (|αA⟩ ⊗ |βA⟩)⊗ (|αB⟩ ⊗ |βB⟩)

Similarly to example in primitive composition, but this time instead with orientation instead of
chirality. Local transition rules are defined as:
GCM A: If βA (flow rate) increases past a threshold of 1 (say 2 → 3), swap orientation αA. After
swapping orientation, send a signal to GCM B to increase βB .
GCM B: If βB increases past the same threshold, swap orientation αB . After swapping orientation,
send a signal to GCM A to increase βA).

Thus forming an infinite loop. To express in fibered ket notation we define the transition as an
operator T acting on the joint state:

T : |Ψ⟩ 7→ |Ψ′⟩
where T is the composition of “flow increase and orientation swap” in each GCM, triggered by the
other’s state.

Iterating T produces an infinite sequence:

|Ψ0⟩
T−→ |Ψ1⟩

T−→ |Ψ2⟩
T−→ · · ·

with no halting configuration. One can assume the local halting condition of “flow rate equals zero”
is never reached. The full system state evolves as:

|Ψn+1⟩ = T |Ψn⟩

where T alternates flow-increase and orientation swap in A and B. If the triggering conditions never
reach a halting configuration, the system loops endlessly, mirroring the classical search for the minimal
y in PRFs. In this way, µ-recursion is realized as an unbounded sequence of fibered ket transitions
with no fixed point.

4.3 Kleenes Theorems for Computational Groupoids

Traditional models of computation rely on total functions or globally defined operations. But in the
context of GCMs, computation is inherently local and context sensitive. Certain geometric transi-
tions are only possible from specific states. This motivates a shift from group structures to groupoid
categories where every morphism is invertible, but only defined between certain object pairs. This is
deeply analogous to Kleene’s theory of PRFs, where computation is only defined on certain domains,
and self-reference (recursion) manifests as groupoid automorphisms or loops but embeds it within a
reversible, topological framework. Thus, computation in a GCM becomes a path through a groupoid of
geometric states, where the allowable morphisms reflect both physical constraints and computational
structure.

Geobits are defined by observer based phenomena. Observer based phenomena require fixed points
or planes. This should not come as a surprise. Kleene’s Fixed Point Theorem [17] states that fixed
points are a fundamental requirement for computation to exist. Information may indeed exist without
the use fixed points but computation cannot. Computation by definition requires distinction, and all
distinction requires a fixed frame of reference. This merely a new and interesting way in which Kleene’s
theorem has manifested itself, albeit without the typical language of lambda calculus and TMs. As
we already have all PRFs defined, Kleene’s Normal Form Theorem is automatically now in effect. We
will tackle two theorems of Kleene.

Kleene’s Recursion Theorem (the S-m-n Theorem): For every total computable function ψ(e, x) (of
two arguments: a program index e and input x), there exists a total computable function s such that

∀e, x : φs(e)(x) = ψ(e, x)

That is, for every “program transformer” ψ, there is a computable way to produce a new program s(e)
that, on input x, computes exactly ψ(e, x).

Kleene’s recursion theorem is a fundamental result in computability theory. For any process that
takes a program as input and produces a new program, there is always a program that can feed itself
as input to that process. It is the foundational result for self-reference in computation. It is used in
proofs of undecidability, the existence of viruses, quines, and in theoretical constructions throughout
computer science.

37

Conjecture 4.1. The Geometeric Recursion Theorem. Let F be any computable geometric transfor-
mation (e.g., a local automorphism or flow) that takes as input a description of a geometric state.
Then there exists a state S∗ such that

F (E(S∗)) = S∗

where E(S∗) encodes the relevant features of S∗ itself.

Remark 4.1. If we assume there is an state encoding then geometric system can encode its own config-
uration (group element, fibered ket state, parametric vector) as part of its own “internal data.” Let’s
denote a geometric state as S, with an encoding E(S) that can be “fed” into a geometric transformation.

Consider a “geometric process” F that, given a description/encoding of a state, produces a new
state (possibly a transformation or a new configuration):

F : E(S) 7→ S′

The goal then becomes to find a state S∗ such that applying F to its own description gives back itself
(or a state that “acts as itself”):

F (E(S∗)) = S∗

Creating a “geometric fixed point” . Given that geometric computation encompasses a vast array of
behaviors this is not a trivial task.

Likewise, for Kleene’s Fixed Point Theorem: For any total computable function f : N → N (map-
ping program indices to program indices), there exists an index e such that

φe = φf(e)

That is, the program with index e computes the same function as the program with index f(e).

Conjecture 4.2. Geometric Fixed Point Theorem. Let M be a GCM, equipped with a finite group
G ⊂ O(n) acting faithfully on M, and let S ⊂ M denote the discrete set of computational states
stabilized under this action.

Then there exists at least one point p ∈ M such that for every computable transformation g ∈ G,
there exists a subgroup H ≤ G such that p is invariant under H:

∀g ∈ G,∃H ≤ G such that h · p = p ∀h ∈ H

Example 4.4. Geometric Quine. Let M be a GCM with a finite group G ⊂ O(n) acting faithfully on
M, and let S be the set of computational states stabilized under this action. Then for any computable
transformation g ∈ G, there exists a configuration p ∈ M that is invariant under a nontrivial subgroup
H ≤ G; that is, h · p = p for all h ∈ H.

This configuration acts as a geometric quine a self-replicating or fixed-point state for the corre-
sponding computational action.

Remark 4.2. This conjecture and example are motivated by analogy with Kleene’s fixed point theorem,
where every computable “program transformer” admits a fixed point (a program that “feeds itself” to
the transformer).

In the geometric setting, the group action G ⊂ O(n) on M can be interpreted as a space of com-
putable transformations or “automorphisms” of the configuration space. For each such transformation,
the existence of a fixed point or stabilized configuration (i.e., a p invariant under a nontrivial subgroup
H) is guaranteed by the finite nature of the group action and the full and faithfulness of G on M, by
a geometric analog of classical fixed point principles (think—Brouwer’s Theorem), together with the
combinatorial structure imposed by G.

The problem becomes that the search space of geometric states is vastly richer than in symbolic
recursion. Geometric Computation doesn’t just include symbolic computation, it seeks to classify all
deterministic computing. So it is essential that there is the property that some configurations are
stabilized under nontrivial subgroups, and hence act as geometric “quines” or self-replicating states
that must remain.

An exact proof of these two conjectures analogous to Kleene’s classical results remains an open
challenge. While the intuition and structure of self-reference persist in the geometric and groupoid
setting, a fully rigorous construction encoding self-replicating states and transformations—demands

38

completely new categorical and geometric techniques. As well doing so carefully with respect to the
computability and the topology of any M, once collaborative refinement of categories in ESM+ is
formalized. I’ve presented here a strong analogy and partial construction, but leave a full formal proof
for future work.

39

5 A Geometric Topology Framework for Discrete Fluidic Computation

Recent work by Miranda et al. [18] on the computability of fluid flows—especially the Turing complete-
ness of Euler’s equations as conjectured by Tao [19]—has provided deep insight into the fluidic nature
of computation. The challenge now is to realize these theoretical insights in a concrete geometric form.

Here, we lay the groundwork for understanding GCMs as geometric, quantum-like, topological
computers. As established earlier, a GCM is neither a von Neumann machine nor a quantum computer.
Quantum computers require coherence and impose strict limits on size, stability, and locality through
entanglement. By contrast, one can increase the total geobit capacity of a geometric computer by
chaining together GCMs into a lattice the bits need not coexist within a single global state vector or
collapse via quantum amplitudes.

In the following section, we demonstrate that such a system lies somewhere in between classical
and quantum computation: deterministic, yet capable of far more than a traditional classical machine.

As a motivating example, consider the classic high school science experiment in which a hose filled
with water is placed across a vibrating speaker. The resulting shape of the hose—observable as a
visible, oscillating pattern—may offer insight into the principles underlying geometric computation.
In this analogy, the speaker acts as the signal source or waveform generator (the “input”), while the
hose and water jet serve as the computational substrate. The output is an incompressible fluid flow.
The frequency of oscillation determines the tightness of the resulting coils, amplitude controls the
radius of the spiral, and phase sets the initial offset or rotation. This observation demonstrates that
computational geometric bordisms naturally manifest as smooth chiral manifolds. Helical and twisted
structures arise as the minimal-energy configurations for storing twist, oscillation, and periodic driving
under geometric and physical constraints. This principle is not merely theoretical: demonstration by
brusspup [20] visually validate the emergence of smooth, helical manifolds in physical systems driven
by periodic forcing. Such phenomena provide direct, tangible evidence that the logic of geometric
computation and bordism is realized in nature, with chirality and smoothness as optimal solutions for
dynamical storage and flow.

If it were possible to cross or interact streams of such geometric bordisms (as with KTH structures),
one could realize a physical lattice of GCMs.

Remark 5.1. Recall Theorem 3.1. That result holds for a purely symbolic computational system.
However, even with binary rotations between helices, the true bit space encodable within a single
KTH under C4

2 is likely on the order of 5–10 bits. This bound arises from additional parameters
intrinsic to fluidic computation, such as:

Velocity: of fluid flow (e.g., a ternary “slow/medium/fast” trit)
Direction: of fluid flow (binary “left/right”)

Thus, the geobit capacity grows quickly as more independent physical parameters are included.
While it is theoretically possible to simply enlarge the state tuple |α⟩, the difficulty is that such
variables are often “hidden”—their states are not directly observable, as are obvious geometric features
like chirality and orientation. In symbolic regimes, these values could be masked but ultimately “read”
from the overall geobit value. In fluidic (physical) systems, they may become inaccessible or non-local.

Remark 5.2. The vibrating hose experiment can be viewed as an analog of a geometric bordism, where
the dynamic shape of the hose mediates between different boundary conditions (e.g., fixed endpoints,
or initial and final configurations). Here, the bordism is “internal” to the geometric evolution of the
hose. See section 6.5 for a breakdown on cobordism theories.

Proposition 5.1. The geometric topology of a GCM encodes its own information-theoretic structure,
but it is also is dependent on the subjective quantization of the model. Geometric computation is
deterministic, but relativistic.

Unlike in classical computation—where bits are objective, absolute, and context-free—in geometric
computation, the very notion of a “geobit” is a choice; it depends on how we partition the phase space,
on which flows we treat as logic, and on the geometric substrate’s topology. Geobits are fundamentally
relativistic state structures. Their meaning and utility emerge only in relation to a chosen quantization
or encoding scheme. I understand this invites criticism, but this is a feature, not a bug.

Just as in physics, where measurements and reference frames are part of the theory, so in geometric
computation, information is a function of both the substrate and the encoding. The boundary between

40

symbolic, quasi-fluidic, fluidic, and gauge regimes is thus not an objective fact about the system, but a
reflection of how we choose to read and utilize its structure a computational relativity at the heart of
the theory. When the shape and flow are the substrate, the encoding choice defines computing model,
and geometric deformation lets one interpolate between discrete and continuous logic.

This doesn’t mean that we will not give a definition of the quasi-fluidic regime. In many ways we
already have. Our examples in Kleene use a hidden variable, a flowing field of vectors, to drive state
behavior. This introduction of a explicitly defined information stream to drive behavior, even a hidden
one, as opposed to just an explicitly defined algebraic operation is the threshold that has been crossed.

5.1 Fluidic State Systems

We will now introduce the concept of a Fluidic State System (“FSS”). Semantically, this is done to
show the non-mechanistic nature of GCMs 12 Classical FSMs cannot represent computations that
depend on continuous parameters, boundary behaviors, or topological bifurcations, things that are
key in geometric or fluidic computers. Computation at scale emerges from the coordinated action of
many such FSS-governed units within the full lattice of GCMs. Thus, µ-recursion corresponds to a
search not just within a single GCM, but within the broader manifold or lattice, as the system evolves
according to local rules and seeks global halting conditions. So in the same way the a finite state
machine is the building block for classical computation, a fluidic state system becomes the building
block for quasi-fluidic and fluidic modes in geometric computability.

Definition 5.1. Fluidic State System. A FSS is a dynamical system defined by a smooth manifoldM
equipped with a finite or countable set of distinguished regions Ri, a family of continuous flows {Φt}
on M governing its evolution, and a collection of transition interfaces I that map symbolic states to
one another as the flow evolves. Inputs and outputs may be realized as boundary conditions, applied
deformations, or perturbations of the flow field. Formally, an FSS is a 4-tuple:

(M, {Ri}, {Φt}, I)

The FSS variables are listed below with explanation:

States - are the configurations of helices {(χi, ωi, τi, ri)}i corresponding to symbolic states
Inputs - are vector fields ϕ(t, x) across space
Transitions - diffeomorphisms in the GCM are governed by geometric differential equations or group
and groupoid morphisms
Outputs - are stable geometries or emission of secondary flow patterns

The conceptual map in Table 6 is provided for ease of the reader.

Table 6: Classical vs. Quasi-Fluidic Computation

Classical Computation Geometric Computation - Quasi-Fluidic Mode

Finite State Machine (FSM) Fluidic State System (FSS)
Turing Machine (TM) Kaminsky Lattice (KL)
Bit Geobit
State Transition Table Groupoid Action + Local Flow Rules (ϕ, ϕ′)
Tape Head Local Update Regime (Φ(t)
Output Tape Observable Manifold Circuit (χ, ω projection)
Alphabet Σ Perturbation/Deformation Input Channel
Initial State s0 Initial Geometric Ri

Remark 5.3 (Comparing FSS Definitions). The core definition of a Fluidic State System (FSS) given
above as a 4-tuple (M, {Ri}, {Φt}, I) emphasizes its geometric and dynamical character, suitable for
most applications in geometric computability and fluidic computation.

12And yes, to also avoid any future acronym namespace collisions with “FSM”.

41

For readers familiar with automata theory, an alternative and fully equivalent formalism is available
using a 6-tuple:

F = (M,Φ,G,∆, µ, ρ)

Here,M is the local state space, Φ is the family of local flow or routing rules, G is the group or groupoid
of allowed geometric transformations, ∆ is the evolution or update function; µ is the observation or
readout map, and ρ encodes the clocking or timing regime.

The two approaches are interchangeable in practice, we use the 4-tuple here since it is ideal for
intuition, the 6-tuple for categorical or algorithmic analysis.

13

Theorem 5.2. FSS Geometric Embedding Theorem. In the quasi-fluidic mode of operation each GCM
admits an interpretation as a self-contained FSS fragment, with its internal and boundary structure
encoding the computational components as part of its geometric computational logic.

Proof. A soft proof is as follows. Let each GCM be modeled as a fibered state space M (|α⟩ ⊗ |β⟩),
equipped with a groupoid G of geometric transformations (twists, flows, orientation rotations).

Local evolution is governed by continuous flows {Φt} and discrete morphisms in G, as in the 4-tuple
definition. The distinguished regions {Ri} correspond to symbolic states, such as particular chiralities
or orientation patterns (the “classical” logic states in a geobit). Transition interfaces I implement
local update rules as morphisms in the groupoid, or, in fibered ket notation, operators acting on the
tensor product structure. Inputs and outputs correspond to boundary conditions (incoming flow) and
observations (projection via µ to a classical bit). Thus, for any classical FSM, one can construct a FSS
out of a series of GCMs that emulates its transitions via a suitable arrangement of regions, flows, and
interfaces. Conversely, every GCM in the quasi-fluidic regime can be described as a FSS, where the
evolution is encoded in groupoid morphisms and the state is a fibered ket. The embedding is natural,
as the groupoid captures all legal geometric “moves,” and the fibered ket structure holds both the
internal state and classical observables.

5.2 Composition of Quasi-Fluidic GCMs in a KL

Previously we assumed purely symbolic communication between lattices of GCMs, forming a KL. Even
as we use quasi-fluidic computation one can still assume a lattice model with symbolic communication
between discrete units, it’s simply that the discrete units now have much richer internal computational
ability. But as we move further into quantum-like topological computation a more fitting model might
be to not model GCMs as discrete units at all. Rather they are modules in a continuous topological flow
circuit, each capable of taking in input via fluid, applying a transformation via its internal geometry
and outputting it to a connected “downstream” GCM.

Hence, the potential path to in this model composition is not adjacency in a single manifold but
contiguity through flows. Each helix becomes a morphism from one flow regime to another. Their
composition is just function composition: H3 = H1 ◦ H2. The discrete GCMs can willingly connect
and disconnect as needed.

But how to direct the actual flows themselves? Recall that the chirality bits X in a geobit g are not
particularly useful in terms of actually encoding information, being limited to ternary under C3. But
that is more than enough to serve for a different purpose—direction of flow. Consider the following
encoding table:

Chirality Trit Value Helix A Helix B
L 0 Route Down Route Left
NT U Halt/Disconnect Halt/Disconnect
R 1 Route Left and Right Route Right

This approach allows routing in 0 or 1 directions at once, forming a “computational topological
flow circuit”. The chirality of the unit helices themselves can encode 1 trit each. Just enough to
communicate in a 2D KL. The U state of “No Twist” (“NT”) represents “refusal”—neither input nor
output. Hence one could write code such as:

13Feedback here is welcome, I am open to combining these two together...maybe. I will leave this footnote for a few
weeks after the preprint.

42

def fun untwist-unit-helix(unit){

map undef → H[unit.χ]
}

The throw a halt on HA in any given GCM while leaving HB untouched.
Or to “reprogram” the actual topological flow of the computation similarly in the same way one

can do in real life using a field programmable gate array (oft abbr. “FPGA”) in Verilog or VHDL.

def fun untwist-even-row(row) {

let: column → N
Where succ: N→ N+ 2
Foreach H in lattice[column,row]

map: undef → H[a.χ,b.χ]
}

To globally set all even numbered KTHs in a particular row to into a “halt” state. The compiler
would automatically generate machine code that would identify all even numbered KTHs in said row
and apply a global “untwist” operation. This is merely a “constructor” for setting up the initial state
though.

Ideally, we would like to route information in any direction across the lattice—up, down, left, or
right. The full set of single- and double-directional flows is thus:

4 single-directional flows: {U}, {D}, {L}, {R}
6 two-directional flows: {U,D}, {U,L}, {U,R}, {D,L}, {D,R}, {L,R}
1 null direction: {}

This yields a total of 11 possible routing states. One might expect these to be encodable with two
trits, but there is a crucial geometric obstruction: the “U” (undefined) state disconnects the logical
model from the geometry. In a unit helix, setting the chirality bit to “undefined” degenerates the
corresponding manifold segment, causing it to lose its twist, angular momentum, and, consequently,
its computational capacity.

In the model developed here, chirality is intrinsically linked to the flow—there is no “undefined”
chirality in a region with a well-defined direction of flow. Therefore, the resulting architecture must
be a vertically-directed but horizontally-cyclic lattice.

Rather than a flaw, this “off switch” for chirality highlights a key feature of the underlying groupoid
structure. Attempting to define an operation such as “increase the number of twists in unit helix Hi”
while in the undefined state yields no morphism—there is no path in the groupoid connecting such
states. Thus, the groupoid encodes both the allowed operations and the geometric impossibilities.

Despite these constraints, Turing completeness is preserved: loops can still be formed within the
circuit, but are restricted to horizontal computation. This routing restriction simply reflects a deeper
truth—certain logical states cannot be geometrically realized, and the groupoid structure naturally
enforces this. An example of a computable circuit under these constraints is given below, along with
the routing table.

Constructor
GC

00 00 1U 01

00 U1 0U U0

U1 U1
UU

(Result)

The use of the U value is analogous to a Turing machine reaching a halt state. The computation
ceases at that location. However, unlike the Turing halt (which is terminal), the geometric system can
be restarted by re-initializing the chirality, re-establishing the flow and restoring the helix structure.
Thus, undefined states act as reversible “pauses” in that segment of the computation, disconnecting
the circuit locally, but not necessarily globally halting the entire process. True halt in KL only happens
when the circuit as a whole is thrown in a disconnected state upon some globally defined end state as
defined by the program.

43

5.3 Well-Behaved Vector Fields in ESM+ and the Paradox of Analog Computation

The categorical space ESM+ (“Embedded Smooth Manifolds with Enrichments”) will serve as the
natural setting for all GCMs, as explained later in Section 6.1. Moving beyond purely symbolic
computation, we must now grapple with the mathematics of vector fields.

One of the key motivations behind GCT is to avoid the classical reliance on PDEs for modeling
computation over continuous media, such as fluids or fields. As both Dr. Tao and Miranda have
repeatedly warned us, PDEs introduce complexities that can develop singularities and “blow up” or
lose regularity.

The fluidic integrators of the past and the analog computers used for World War II artillery
tables are examples of how humanity has exploited the computational properties of fluids—while
also encountering their mathematical hazards. While many analog machines merely simulated digital
computers hydraulically, some fluidic computers (such as Soviet liquid PDE integrators) performed
actual analog computation. But herein lies the paradox: the computational substrate is not immune
to the pathologies of the mathematics it enacts.

One could compute the behavior of liquids, but only by using liquids themselves. If a liquid PDE
solver was poorly engineered or maintained, singularities within the fluid could ruin the computation.
Likewise, if the equation being computed contained singularities, the liquid would misbehave. The
medium was the message, and vice versa. Unlike digital computers, which tend to fail noisily, analog
computation can collapse silently.

GCT circumvents this by introducing local, deterministic transition rules that enable computability
by structure rather than by solving equations. As a result, GCMs are inherently piecewise differen-
tiable. We do not intend to solve Navier–Stokes or similar systems by computing bit-flips or logical
steps. Instead, we seek to geometrically encode logic into the shape and interaction of embedded
manifolds. In a KL, the problem and the computer can become one and the same.

The following are the constraints for “well-behaved” vector fields in a GCM:

Continuity The vector field F⃗ (x) must have no sudden jumps or discontinuities.

Differentiability F⃗ (x) must be at least C1.
Lipschitz Condition The field must satisfy a Lipschitz condition to ensure well-posedness of solu-
tions to dx⃗

dt = F⃗ (x⃗), preventing non-deterministic behavior due to multiple trajectories from a single
point.
Boundedness or Decay at Infinity ∥F⃗ (x⃗)∥ → 0 as ∥x⃗∥ → ∞.
Tangency to Boundary The vector field must remain tangent to any topological boundaries—never
“jumping off” into space, but lying flat along surfaces.

Each of these conditions helps address the potential blind spots of the others, ensuring a robust,
multi-pronged approach to smooth flow of fields over smooth manifolds.

5.4 A Dynamical Systems Approach for Modeling FSS with ODEs

At this point, we firmly enter the realm of dynamical systems modeling to understand fluidic com-
putation in a KL. It is not my intention to use differential equations to define the model; rather, we
use them to describe or analyze the computational dynamics when flow is involved. That is, we are
modeling how fluid flow perturbs a helix’s radius, twist, and so on, and wish to write down a few
governing equations. These are not fundamental to the notion of geometric computability—they are
interpretive tools, much like how logic circuits can be analyzed using Ohm’s Law or other equations
in electronics, but the logic itself does not depend on such analysis.

The following is a toy model which serves to deepen our understanding of quasi-fluidic computation.

Definition 5.2 (The Fluidic Helix Computational Model (“FHCM”)). The FHCM is an example of
a dynamical system that, when sufficiently composed, can simulate computation of helices in a KL.
We define a helix H(t) embedded in Rn, where t is a parameter along the helix (arc length or time).
Each unit helix is equipped with the following dynamical state variables:

Chirality χ: ∈ {+1, 0,−1}—right-handed, left-handed, or undefined. Governs direction of flow and
computation.
Orientation ω: ∈

{
2πk
N : k = 0, . . . , N − 1

} ∼= CN (or, in the fully analog case, the continuous circle
S1). The orientation state space can be identified with a cyclic group of order N ; the value of N

44

encodes the logical base and simultaneously determines the 2n state capacity. The underlying rotation
logic sets the cross-sectional geometry.
Flow Rate ϕ(t): ∈ R—fluid speed through the helix body. A generalized hidden variable that can
drive state changes. Quantized at the user’s discretion.
Flow Direction ϕ′(t): ∈ {+1, 0,−1}—the sign of the derivative, indicating rightward (+), halt (0),
or leftward (-) flow. Sets the local chirality. While technically optional, it is fundamentally just dϕ

dt
and so is naturally included.

These represent the core variables in the quasi-fluidic regime. Additionally, we may include:

Radius r(t): ∈ R+—the scale of the helix. Larger shapes are analogous to higher memory bandwidth.
Optional for core computation, but can represent “scale of computation.”
Twist Density τ(t): = dϕ

dt—angular velocity around the axis, acting as a “clock rate.” Higher twist
means faster iteration through states.
Tube Volume V (t): —can be seen as analogous to data throughput, or more aptly, parallelism.
Greater volume allows for more flows.
Phase Offset θmin: ∈ [0, 2π)—the starting point in the twist cycle. Can serve as an “initial state” or
“addressing” mechanism.
Length L: —physical length of the helix, determining the extent of the computation cycle or memory
span. In a finite system, this bounds computational depth or state space.

These additional variables are not strictly necessary for modeling computation in this regime, but when
modeling under actual physical or analog constraints, they become useful to consider. In geometric
computation, the user is empowered to define the model as they see fit: the more of these variables
included, the closer one comes to the full fluidic regime, even if you only cross into this state upon
breaking algebraic closure and descending to C1 under the rotation group.

How then does computation work in FHCM? A computation step is modeled as a a global pulse
causing a local change in ϕ(t) as dictated by each individual GCM transmitted across a KL. Core
functions are as follows:

Flow direction causes chirality swaps - If ϕ′(t) > 0, swap χ0 → +χ of Hi. If ϕ′(t) < 0, swap
χ0 → −χ of Hi. If ϕ(t) = 0 set χ = 0. As a table mapping for each unit helix Hi:

χi =

+χ if ϕ′(t) > 0

−χ if ϕ′(t) < 0

0 if ϕ(t) = 0

Orientation rotates relative to flow rate - A canonical form can be given by a user-specified bi-
jection

F : R −→ Z/NZ

or, for practical computation, Choose N intervals in ϕ(t), one for each orientation state. The piecewise
function becomes:

ωi =

0 if ϕ(t) ∈ I0

1 if ϕ(t) ∈ I1
...

N − 1 if ϕ(t) ∈ IN−1

Or for use of analog logic flow (e.g. SO(2)):

ωi = G(ϕ(t)), G : R → S1

Here, G could be any continuous, monotonic, or user-specified function mapping flow rate to orientation
angle.

And behavior for the optional extensions:

Radius growth = bandwidth expansion — r(t)x → r(t)x+1 indicates increased capacity— par-
allelism or memory.

45

Twist density increases with frequency — More twists is equivalent to a higher computational
“clock rate”.
Phase coupling — Helices align their θmin if flow is synchronized (coupled oscillators).
Length — The physical length of the helix grows or contracts as a function of twist density and
radius, reflecting the ability to scale up computation or memory.

The hidden variables {ϕ, ϕ′} are especially useful for our purposes, as there is a clean mapping
between their values and the orientation and chirality state variables {ω, χ}.

The main logic operations are implemented by orientation rotations of varying density. Although
it is physically possible to model sequential transitions between states (e.g., 0◦ → 90◦ → 180◦), the
true computational power of the model arises from the ability to transition directly between any pair
of allowed orientation states in a single operation, provided the flow pulse is configured appropriately.
This allows multi-bit logic flips—analogous to parallel processing in digital systems—and is a key
source of potential speedup in geometric computation (see Section 5.9).

Chirality is mapped in a discrete, one-to-one correspondence with ϕ′(t). Flow in this context refers
to two local flows on a single manifold, one for each unit helix, and is not necessarily a global field.
Importantly, zero flow is not an “absent” state; as previously explained, it represents a local halting
condition. Thus, computation can proceed globally, locally, or be paused in any region of the lattice,
fully mirroring the flexible control of both digital and analog logic.

Both binary and multi-valued logic are possible: the orientation state ω may take values in CN (i.e.,
Z/NZ), or for the binary case, just two values. In the binary regime, standard Boolean gates (AND,
OR, NOT, etc.) are implemented as local transitions triggered by flow pulses. In the generalized (N -
ary) case, the same mechanism extends naturally to multi-valued logic operations, with orientation
rotations corresponding to modular logic gates. The model is thus highly flexible: it recovers classical
digital logic as a special case, while supporting richer logics for advanced forms of computation. (The
examples below are presented under binary ω-logic.)

AND/OR gates — Both input KTH have their chirality set to route into the downstream KTH,
whose internal transition rules encode the relevant truth tables for the operations. A flow pulse then
executes the operation.
NOT gate — One input KTH routes to a downstream KTH, and it automatically inverts the given
orientation on a flow pulse.
Memory register — Configuration is stable as long as chirality and orientation remain unchanged
and no flow pulse disrupts it.
Clock — Global periodic flow pulse triggers all logic transitions per chirality routing at that tick

Note regarding physical input limits. Each node in the lattice can receive flows from at most three
directions {D,L,R} setting the maximum in-degree of the graph as 3. But internal logic arity in ω
can be in any one of N possible states, not just ternary. Logic of the nodes in the graph as whole can
be arbitrarily rich, determined by the structure of ω (e.g., for quaternary logic, N = 4, for analog logic
flow, N is infinite). Hence, The node’s update rule can compute any function:

f : Z/NZ3 → Z/NZ

This why we use the term “modular logic gate”.

Definition 5.3 (Modular Logic Gate). Let N ∈ N with N ≥ 2. A modular logic gate of arity k is a
function

f : (CN)k → CN ,

where CN
∼= Z/NZ is the cyclic group of order N .

In the geometric computation context, each node in the lattice receives up to k incoming “flow”
states, each taking a value in CN , and computes a new output state via f . The update rule for each
node is thus specified by such a function.

For example, when k = 3 (corresponding to directions {D,L,R}), the node’s transition is given by

f : (CN)3 → CN .

If N = 2, f is a Boolean logic gate; if N > 2, f is a multi-valued modular gate. For N → ∞, f is
an analog gate over S1.

46

Remark 5.4. Unlike traditional n-ary logic gates, where both the number of inputs and the logic
alphabet are fixed (e.g., a ternary gate maps (C3)

3 → C3), the modular logic gate in this geometric
framework is defined by a physically fixed arity (k, set by the lattice’s connectivity) but allows the
logic alphabet N to be arbitrarily large. Thus, each node processes up to three inputs but may output
any N -valued state. In GCT, each wire can be its own algebra—thanks to the helix.

Example 5.1 (Helix Evolution Equations as ODEs). We describe the evolution of the optional physical
variables through local coupling between geometry and flow, modeled by the following ODEs:

Radius Growth — Bandwidth/Parallelism

dr

dt
= λr · fr(load, ϕ(t))

Here, the radius r increases in response to higher computational load or flow rate. λr is a growth rate
constant, and fr is a user-chosen function—possibly as simple as fr = ϕ(t), or based on local memory
pressure.
Twist Density — Clock Rate

dτ

dt
= λτ · gτ (signal, t)

The twist density τ increases in response to a global or local clock signal, or as a function of time. λτ
is a coupling constant; gτ could be a pulse train or feedback from global clocking.
Phase Coupling — Synchronization

dθi
dt

= Ω+K
∑
j∼i

sin(θj − θi)

This is the standard Kuramoto model [21] for coupled oscillators. Each helix i aligns its phase θi with
its neighbors, with coupling strength K and natural frequency Ω. While the quasi-fluidic GCM model
is globally synchronous by default, local helices can synchronize via phase coupling. This is analogous
to asynchronous Muller C-gates, enabling emergent timing behavior within the lattice.
Length Evolution — Extent of Computation

dL
dt

= λL · hL(τ(t), r(t))

The physical length L of the helix grows or contracts as a function of twist density and radius,
reflecting the system’s ability to scale up computation or memory. λL is a scaling constant; hL may
be proportional to τ(t)r(t) or follow any other chosen law.

Remark 5.5. I must stress that these are merely interpretive tools,14 and that more advanced com-
putational approaches are likely warranted in future work. The core elements have been defined
explicitly above; the extension variables, which are more physical and continuous, are intentionally left
as differential equations.

5.5 The Algebra of Flow

In the quasi-fluidic regime, interactions are not purely symbolic: they are geometric and dynami-
cal—the information is encoded in the differential structure of both flow and form. It is at this point
that the cross-sectional geometry, as discussed in Section 3.6, reappears. The relevant vector space
now represents a field flowing through a bounded geometry.

How, then, should we define computational expressiveness in this new context? Thus far, for the
sake of simplicity, we have refrained from using cross-sectional geometry as an encoding variable in
the FHCM. In the future, however, it will be formalized as follows:

Cross Section Geometry Ξ(t) ∈ R+: A normalized measure of real-valued macro-expressiveness in
computational logic. It quantifies the total geometric variation in a cross-section compared to an
isotropic flow volume.

14There are a clever ways of saying when one is a bit too far into the weeds here.

47

Definitions of expressiveness are notoriously subtle. Using harmonic analysis, we could formalize
expressiveness mathematically for cross-sectional geometry itself, but now, we must operate in a setting
that intermingles logic with geometry. Here, Felleisen’s theorems on the expressive power of program-
ming languages [13] once again prove decisive. To construct a geometric analogue of his definition, we
consider the ability of one system of logic to engage in macro-expression of another.

It is a common misconception that Turing completeness “flattens” all systems of computation in
terms of expressiveness. Felleisen demonstrated this is not the case: crucial distinctions exist between
computational systems at the level of core operational constructs—not merely as “syntactic sugar.”

As previously discussed in Section 3.6, binary logic is the most expressive form of discrete logic—less
is more in this regime. Using binary logic gates, one can construct any other logic gate but the reverse
is not generally true, especially when considering higher n-ary logics such as quaternary or beyond.
Once again, logic and language are one and the same in geometric computation: any computational
process implementable in hardware can exist in software. One need only look to the history of graphics
hardware and APIs to observe this ebb and flow.

Remark 5.6. Dear reader, the author understands that this definition of Ξ may raise eyebrows, but
it is not an error. Is it possible to calculate the exact value of macro-expressiveness? Rice’s theorem
says no, and this I do not dispute. In real systems, noise always intervenes, but this does not preclude
a normalized measure of expressiveness itself. My contention is that such a measure is analogous to
the way physics treats entropy: there is no closed-form solution for entropy in general, yet we know
entropy increases. Thus, we build a field (thermodynamics) around a guiding principle, not a precise
formula.

Theorem 5.3 (Fluidic Construction of E/V Tradeoff). Inherent tradeoffs between geometric expres-
siveness and algebraic verifiability arise in the idealized computational flow of an incompressible fluid
within the cross section of a geometrically computable manifold.

Proof. Let the cross section be a disk D2 in the xy-plane. The velocity field v⃗(r, θ) at each cross section
can be written in polar coordinates as

v⃗(r, θ) = vr(r, θ) r̂ + vθ(r, θ) θ̂,

where vr and vθ are the radial and angular components, respectively.
Suppose the flow is smooth and incompressible, and consider the angular dependence of vr and vθ.

Each component admits a Fourier expansion:

vr(r, θ) =

∞∑
k=−∞

ak(r) e
ikθ, vθ(r, θ) =

∞∑
k=−∞

bk(r) e
ikθ.

Imposing rotational symmetry of order n means requiring invariance under rotation by 2π/n:

vr(r, θ + 2π/n) = vr(r, θ) ∀ θ.

This forces all Fourier coefficients ak(r) and bk(r) with k /∈ nZ to vanish. Thus, only harmonics with
k divisible by n remain:

vr(r, θ) =

∞∑
m=−∞

anm(r) einmθ.

In the absence of symmetry (n = 1), all 2K + 1 modes with |k| ≤ K are permitted. Under n-fold
symmetry, only those with k = 0,±n,±2n, . . . ,±Mn, with M = ⌊K/n⌋, survive—yielding 2M + 1
allowed modes.

We define the relative expressiveness as the fraction of permitted angular degrees of freedom:

E(n) :=
Number of allowed modes for symmetry n

Number for n = 1
=

2M + 1

2K + 1
.

For example, with n = 4 and K = 8, we have M = 2 (i.e., k = 0,±4,±8), so E(4) = 5/17 ≈ 0.29.
As n → ∞, M → 0 and E(n) → 0; i.e., only the constant mode survives. The only flow invariant

under arbitrary rotation is uniform, and all angular structure is lost. This directly parallels the earlier
result that the only smooth closed 1-manifold with infinite rotational symmetry is the circle.

48

Figure 6: Macro-expressiveness vs Isotropy

Thus, increasing symmetry (micro-expressiveness) necessarily reduces the space of physically ex-
pressible patterns (macro-expressiveness). The tradeoff is exact, quantitative, and determined by the
order of symmetry imposed on the system.

Now, the internal geometry of the cross-section becomes a new axis of calculation. We can have
different flow channels, topological defects, twists, or even branching flow lines within the same cross-
section, if the shape allows it. Shapes more complicated than circles allow for distinct internal flow
patterns that simply cannot exist in a circle. The more expressive cross section geometry can allow
for far more “channels” of fluid flow. Computation could be structured in more expressive ways that
are simply not possible with a isotropic volume. It’s not just which logical states, but how the flow
moves within the logic state.

This is precisely the geometric analogue to Felleisen’s macro-expressiveness we needed. If micro-
expressiveness ask “How many states can a bit have?” then macro-expressiveness demands we answer
“But how many different kinds of computation can happen, depending on the internal geometry?”

Remark 5.7. Warning. The EVT proof constructed via geometric-algebraic comparison of flow chan-
nels belongs fundamentally in the fully fluidic regime. Unlike the first two abelian regimes—where
ω-logic directly encodes bit states and geometry serves only as constraints—in the fully fluidic regime
the geometric complexity of flow patterns themselves directly encodes computational logic and ex-
pressiveness. Exploring the fully fluidic regime is something we are not equipped to handle yet, but
using the most general of all equations, we can glimpse at the power it has in store. Even though use
of 4-fold symmetry would not truly be considered in the fluidic mode, this construction is primarily
intended to prove a specific theorem.

Comparing the extreme ends of spectrum, there are in fact, two fundamentally different regimes of
analog computation. The first (algebraic analog flow) arises in systems governed by smooth, algebraic
evolution 15, where states are continuous but transitions are predictable and algebraically controlled.
The second (geometrical chaos) emerges in systems with sensitive dependence on initial conditions,
nonlinear feedback, or singularities, where computation is encoded in the structure of the chaotic tra-
jectories themselves. Only the latter regime can transcend the expressive power of algebraic machines,
accessing the uncountable and unpredictable, as seen in fluidic and geometric chaos. So not all forms
of analog computation are created equal, in the same way that that Cantor showed there are more
real numbers than natural numbers. Pour-El and Richards pointed directly at this issue in their fa-
mous paper [22], but the spectrum of n-logics we can derive in GCT from SO(2) allows a more easy
visualization of what precisely they identified.

Corollary 5.4 (Twin Helix Computation Twist–Expression Boundary). For any computational twin
helix, there exists a natural boundary between its geometric expressiveness and its twist density.

Proof. Let H(t) be a smooth helical segment in the FHCM, and define:

Cross-sectional volume Vcross(t): the volume of the cross-section at time t,

15This is the BBS model, which will be discussed later.

49

Embedding dimension D: the dimension of the ambient space (typically R3 or R4).

Suppose, for contradiction, that the set of all possible cross-sectional geometries includes all closed
1-manifolds. Since the twist density τ implies periodicity along the helix, at sufficiently high twist
rates, there would exist (by the pigeonhole principle) two instances of an infinite set of cross-sectional
geometries that must overlap or intersect within H(t), resulting in singularities.

Therefore, there exist maximum allowable values τmax, Ξmax(τ) (cross-sectional expressiveness),
and Vmax(τ) such that

if τ(t) > τmax =⇒ Ξ(t) < Ξmax(τ(t)) and Vcross(t) < Vmax(τ(t)),

with equality only in the limiting case of perfectly cylindrical (minimal expressiveness) and maximally
twisted helices.

Remark 5.8. One cannot simultaneously encode more twists and more geometric expressiveness within
the same physical space. Increasing twist density reduces both the allowable expressiveness and cross-
sectional capacity. This constraint holds even in higher-dimensional embeddings D, since each unit
helix must preserve its own geometric consistency and avoid self-intersection or fluid shear instability.
The total expressiveness and memory capacity of a unit helix is thus bounded from above by geometry,
and cannot be made arbitrarily large at high twist rates.

This pattern mirrors what is observed in highly dynamic programming languages: they often
run more slowly than static ones, unless equipped with specialized hardware. See Kogge [23] for a
technical discussion of how this phenomenon has historically played out in computer architecture.
Steele and Sussman [24] for another implementation. Future work will involve understanding this
quantum boundary better to develop better high-level language CPU architectures. 16

Remark 5.9 (Closing Remark on the EVT Hypothesis). Proving the expressiveness/verifiability tradeoff
for finite state or non-Von Neumann models is an exercise suitable for graduate coursework. Extending
the result to full Von Neumann architectures and modeling the curve between programming languages
is the realm of doctoral dissertations or collaborations between professional research mathematicians
and computer scientists with backgrounds in human-computer interaction. But to prove the general
EVT Hypothesis at the categorical level, capturing all forms of computation, digital or analog, would
require a mathematical insight worthy of a Fields Medal. So with regards to the EVT Hypothesis,
here I must stop, as this topic is a vast metamathematical maze and I wish to stick to the specific
properties of twin helices for the remainder of the paper.

5.6 Application of Lie Groupoids to the Quasi-Fluidic Regime

As the state space of transformations in large abelian (Cn) geobit groups begins to resemble compact
simple Lie groups in the “fuzzy” logic limit, and since Kleene’s theory of partial recursion suggests
groupoids as the most natural structure for partial transformations, it is natural to ask: Can these
perspectives be unified? The answer is yes. The concept of a Lie groupoid—first introduced by Charles
Ehresmann in the 1950s—provides exactly this synthesis.

A Lie groupoid is, informally, a groupoid in which the space of objects and the space of morphisms
are smooth manifolds, and all structural maps (source, target, identity, inversion, and composition)
are differentiable. Like Lie groups, they are built on differentiable manifolds, but as groupoids, they
allow for a more flexible, local symmetry structure: instead of a single global group action, we have
objects and invertible morphisms between them.

Lie groupoids provide a natural algebraic and geometric framework for describing the partial,
local, and smooth symmetries that arise in fluidic and geometric computation. Where groups suffice for
symbolic computation, Lie groupoids generalize these ideas to capture the location-dependent logic and
dynamical transitions of fully geometric machines. The classification of orbits and stabilizers in a Lie
groupoid encodes a richer computational structure, offering a spectrum of intermediate computational
classes bridging the digital/symbolic and analog/fluidic extremes.

When dealing with a groupoid, it is natural to ask what its fundamental invariants are. In the
context of KTH, or indeed any helical solid, we arrive at a conclusion that many category theorists
may find surprising: the winding numbers are baked into the geometry. These winding numbers are

16“Dude, why is the Python code running slow?” “Aha, well you see, the quantum universe is actually made of these
computational glued together helices...”

50

not abstract group-theoretic constructs, but rather explicitly parametric homotopy classes “decorated”
by the geometry itself. If one follows a path from the apex of one unit helix to the apex of the other,
the total number of twists in each chirality defines the fundamental groupoid of the space—there is no
freedom for deviation or continuous deformation beyond that imposed by the geometry.

Definition 5.4 (Decorated Fundamental Groupoid). Let M be a smooth (or stratified) manifold,
and let S denote a specified set of geometric, combinatorial, or dynamical structures on M—such as
winding numbers, twists, chiralities, orientation data, flows, or other local parameters.

The decorated fundamental groupoid ΠS
1 (M) is defined as follows:

• Objects: Points x ∈M (as in the classical fundamental groupoid).

• Morphisms: Homotopy classes of continuous paths γ : [0, 1] → M from x to y, together with
an assignment of “decorations” from S to each path, compatible with the composition law.
That is, a morphism from x to y is an equivalence class [γ, d], where d records the geometric or
combinatorial data along γ.

• Composition: Given [γ1, d1] : x → y and [γ2, d2] : y → z, their composite is [γ2 ∗ γ1, d2 ∗ d1],
with decorations composed via a specified rule (e.g., addition of winding numbers, concatenation
of twists, etc.).

Two decorated manifolds (M,S) and (N,S ′) have equivalent decorated groupoids if there exists a
functor between their groupoids preserving both the path composition and the decoration data.

In practice, the decoration S can be:

• A winding number function assigning an integer to each loop (e.g., in π1(M) or its universal
cover).

• A combinatorial label (such as twist, chirality, or a physical field value) defined locally or globally
along paths.

• A program, automaton, or any computable process attached to each morphism, as in synthetic
homotopy type theory.

The classical fundamental groupoid is recovered by taking all decorations to be trivial (i.e., move
into a coordinate-free geometry space).

Remark 5.10. The use of the term “decorated” in this work is inspired by its widespread adoption in
modern geometry and category theory (see, e.g., Penner [25], and Fong [26]). In particular, Baez’s [27]
construction of “decorated cospans” provides a categorical framework for attaching auxiliary data (the
decorations) to the objects or morphisms of a base category, preserving compositionality and enabling
a rich interplay between structure and process. The notion of a decorated groupoid used here is entirely
in this spirit: we enrich the fundamental groupoid with additional geometric or computational data,
compatibly with groupoid composition and equivalence.

In a GCM, the fundamental groupoid is not merely a topological invariant, but a combinatorial-
topological hybrid: it records both geometric (number of twists) and logical (chirality) data.

Let M be a manifold, and let H = {(τi, χi)}i denote the set of helices with parameters τi (number
of twists) and χi (chirality) for each helix i. The decorated fundamental groupoid is defined as

Π1(M,H) = {homotopy classes of paths in M decorated by (τi, χi)} ,

with composition given by concatenation of decorated paths, and relations arising from the gluing of
types.

For a given path [γ] ∈ π1(M) in a twin helical manifold, the decoration is explicitly computable:

[γ] 7→ (τA · χA) + (τB · χB)

where A and B index the two unit helices.
To study the ensemble or statistical behavior across a collection of such helices (or geobit types),

we may define the average decorated invariant:

⟨[γ]⟩ = 1

n

n∑
i=1

τi · χi

51

where n is the total number of possible configurations in the groupoid space.
For example, in the fully symmetric regime (V4), the average winding number over all geobit types

is (0×2+2×2)/4 = 1. In more general or dynamical regimes, where twist and chirality are imbalanced
or can vary more freely (e.g., ternary undefined space in chirality eliminates winding numbers on half
the manifold), this average may take arbitrary values, and the distribution of invariants can be studied
using tools from measure theory and ergodic theory.

Definition 5.5 (Homotopy Computation). Let M be a GCM, and let SGCM be its state space.
A homotopy computation is a decorated path γ : [0, 1] → SGCM , together with a sequence of
computational (or geometric) operations, such that:

• The path encodes the evolution of states under the dynamical laws (flows, diffeomorphisms,
group actions) of the GCM.

• Homotopies between computational paths correspond to equivalences or deformations of compu-
tations, preserving key invariants (e.g., outcome, topological class).

It is often observed that the fundamental groupoid of a contractible manifold is trivial in the
classical topological sense—it wishes to live inside an ∞-category. But despite the fact that KTH
is homeomorphic to a 3-ball, the introduction of global twist via topological deformation destroys
triviality of the underlying homotopy classes one would find on the surface of a sphere. The fundamental
groupoid corresponds now not a topological invariant, but a number. In this manner, the individual
homotopies become not a path to a proof, but a path to a computation. In this space, morphisms
between points become self contained FSS’s that compose in total to become the overall calculation.
Via the Howard-Curry Correspondence, which equates types, proofs, and programs, I justify this as
valid categorical construction.

However, in the GCM lattice setting, the situation becomes even richer: the helices communicate via
vector flows, but the totality of all helices is not, in general, a single connected geometric or topological
space. Instead, the lattice should be viewed as a network of interacting groupoids—each encoding its
own computational and geometric invariants, but coupled through the flow-based communication. This
layered structure of a FSS is fundamental to the architecture of geometric computation.

Thus, even the most trivial topological spaces can host nontrivial groupoids when “decorated” by
twists or combinatorics that form new habitat for mathematical structure, not requiring the machinery
of ∞-categories, but being enriched by the underlying twisted geometry. The fundamental groupoid
acts as a digital invariant, labeling computational morphisms within the groupoid, and serves as both
a memory of past transformations and a structural fingerprint of the system’s evolution. I understand
this construction may be difficult for longtime practitioners of algebraic topology to swallow, but the
author feels that as far triviality goes, the playground matters as much as the player.

Conjecture 5.5 (Extended Grothendieck Homotopy Hypothesis). Let M be a smooth or stratified
manifold equipped with additional geometric or combinatorial structure (such as twist, chirality, or
orientation), and let G denote its decorated fundamental ∞-groupoid: the structure encoding homotopy
classes of paths together with all computational, combinatorial, or dynamical data attached to those
paths.

Then the following hold:

(A) Classical Recovery:
If G is stripped of all computational or combinatorial decorations, it reduces (up to equivalence)
to the classical ∞-groupoid of M , recovering the standard Homotopy Hypothesis: “Homotopy
types are equivalent to ∞-groupoids.”

(B) Enrichment:
The enriched groupoid G encodes not only the homotopy type ofM , but also the full combinatorial,
computational, or dynamical structure of the system—so that two decorated spaces are equivalent
if and only if their enriched groupoids are equivalent (as symmetric monoidal ∞-categories, or
in an appropriate enriched sense).

(C) Failure of Classical Correspondence: There exist decorated geometric manifolds M and N
such that M ≃ N as topological spaces (i.e., weak homotopy equivalence holds), but their enriched
fundamental groupoids GM and GN are not equivalent in any enriched ∞-categorical sense.

52

More formally, there exists a category ESM+ of smooth or stratified manifolds with flow-preserving
morphisms, torsion structure, and chirality data such that:
No functor F : ESM+ → ∞-Gpd induces a homotopy equivalence that simultaneously preserves
path components and the torsion-invariant structure, unless F is enriched with additional framing
or coordinate data.

(D) Computational Duality:
For any such enriched groupoid, there exists a “Curry–Howard dictionary” between:
(a) decorated paths as proofs, and
(b) decorated paths as computations,
so that the groupoid serves simultaneously as a classifier of homotopy types and as a substrate
for geometric computation.

Summary: The world of decorated homotopy types—that is, spaces enriched with computable or combi-
natorial structure—is faithfully encoded in the world of decorated ∞-groupoids. The classical Homotopy
Hypothesis is a limiting case: the general correspondence unites topology, logic, and computation in a
single invariant.

Remark 5.11. It would be amiss to not mention Grothendieck’s Homotopy Hypothesis, which equates
the world of homotopy types with that of ∞-groupoids, classifying spaces up to continuous deformation
via algebraic symmetry. However, in the regime of geometric computation, the fundamental groupoid
now acquires a dual role—it is both a classifier of paths and a dynamical engine for computation
and flow. This suggests a possible enrichment of the hypothesis, where ∞-groupoids are not mere
static invariants, but may encode intrinsic computational or dynamical structure. A bridge between
geometry, logic, and computation that Grothendieck’s original vision only partially foreshadowed.

Now, with regards to the Lie part of groupoid. Let us explicitly denote the manifold encoding these
variables as:

Mcore = {χ} × {ω} × {ϕ(t)} × {ϕ′(t)}

These are the discretely defined “core” variables. Each element of the Lie groupoid corresponds to
a permissible local transformation or symmetry, defined explicitly by diffeomorphisms between open
subsets of this manifold Mcore. Formally, let the Lie groupoid of the core quasi-fluidic variables be
defined as:

Gcore ⇒Mcore

with source and target maps s, t : Gcore →Mcore, and a smooth composition law:

(g, h) 7→ gh, whenever s(g) = t(h).

This groupoid encodes transitions between logic and routing states via smooth, symmetry-based trans-
formations and continuous or discrete rotations in ω and flips in χ, controlled by the flow variables
ϕ, ϕ′.

The structure of Gcore is finite-dimensional, smooth, and fully explicit. It is also algebraically dense,
embedding naturally into a sufficiently high-dimensional Lie group due to the continuous nature of
flow rate and orientation. Yet, this Lie groupoid is vastly simpler and more manageable than the full
Lie groupoid structure of FHCM with all analog/physical variables which is most definitely infinite
dimensional. Thus, the core FHCM Lie groupoid provides a rigorous yet manageable geometric alge-
braic framework for quasi-fluidic computation, neatly capturing the fundamental structure necessary
for explicit mathematical and computational analysis.

5.7 Fiber Bundles and Moduli Spaces on Chiral Manifolds

Regarding triviality and computation in helical fiber bundles: it is true that the fiber bundle structure
of a single twin helix manifold is trivial. The KTH is globally diffeomorphic to a cylinder S1 × D2;
more concretely, one can construct the fibration by attaching (gluing) along both sides of a disk, and
then following the helical parameters.

This apparent simplicity, however, is misleading from a computational perspective. The triviality
of the bundle means there is no topological twisting or obstruction (in contrast to, for example, the
nontrivial Hopf fibration). Yet, when geometric computation is introduced—through operations on

53

chirality, orientation, and flow—the computation is encoded not in the topological class of the bundle,
but in the dynamics and group actions imposed by gluing, deformation, and parameter manipulation.

It is precisely this triviality that enables a clean separation of “hardware” (the geometric manifold)
from “software” (the computational process). The rich computational behavior of the system arises
not from topological complexity, but from controlled geometric manipulations within an otherwise
simple topological scaffold. In this sense, the triviality of the fiber bundle can be a saving grace.

As a practical analogy, recall that “jet spaces” in differential geometry record all derivatives of
functions along a submanifold. For a trivial bundle, jet calculus can be applied directly: the absence
of twists or singularities makes the derivative structure simple and computable. By contrast, in the
Hopf fibration or other nontrivial bundles, holonomy and monodromy effects introduce quantum-like
behavior and computational complexity—sometimes even leading to noncomputability.

For readers more comfortable with moduli space language, consider the two Archimedean spirals
from Lemma ??. The moduli space of the full 4D KTH is extraordinarily large (requiring, in principle,
a Hilbert space due to the infinity of possible cross-sectional 1-manifold joins), so it is pragmatic to
work with toy models and restricted cases.

Figure 7: Visualization of the moduli space for two spirals with |a| ÷ |b|. On the right, the red line
encodes an instance of an adjustable ray for right handed spirals. The red dot on the compact moduli
space on the left corresponds to the phase shift. The equivalence rays opposite in grey encode possible
left handed spirals. Note the singularity at b = 0. The two rays cannot meet.

Lemma 5.6. Bifurcation of Moduli Spaces in Chiral 1-manifold Lemma. Two Archimedean Spirals
sharing opposing chirality may not be constructed via a continuous moduli space.

Proof. Let M be the moduli space of smooth, non-degenerate Archimedean spirals in R2, parameter-
ized by r = aθ for a ̸= 0. Chirality is given by the sign of the a in the curvature formula. Suppose, for
contradiction, that there exists a continuous path in M from a right-handed spiral (a = a0 > 0) to a
left-handed spiral (a = −a0 < 0). Then the function a(t) parameterizing the path must pass through
a = 0 for some t, at which point the spiral degenerates into a singularity. Thus, there is no continuous
path in M connecting spirals of opposite chirality. Therefore, the moduli space splits into two disjoint
components,

Mspirals = Mleft ⊔Mright

corresponding to right and left handed spirals.

This result is related to the proof of Lemma ??. But now it is done in reverse. It is not possible to
construct a smooth moduli space that satisfies both of these spirals, as doing so requires the opposite
of what we previously did, rather than trying to form a smooth path, the unwinding of the geometry

54

of the spirals causes a singularity. Though the underlying topologies are homotopic (both are smooth
embeddings of S1 in R3), their geometric phase structures are not deformable through a regular isotopy.
But the reverse is not true. Two spirals of the same chirality can share a moduli space, one only need
to account for phase shifting. The group in this case is simply C2, the operations—multiplying a by
−1 or 1. It is the barest form of a GCM. Herein lies what I believe to be the harsh truth of what a
cellular automata is truly made of, underneath that black and white screen we see.

The geometric phenomenon that splits moduli spaces by chirality, as seen in the case of Archimedean
spirals, persists in much higher dimensions. Work from Mullner [28] proved the existence of strongly
chiral smooth manifolds in every oriented bordism class for dimensions ≥ 3, and simply-connected
examples in every dimension ≥ 7. This shows that, in general, the moduli space of such manifolds is
fundamentally disconnected by chirality—there is no continuous transformation, even up to bordism,
connecting a manifold to its reverse orientation.

Conjecture 5.7. Abelian Group-Induced Bifurcation of Geometric Moduli Spaces: Let X
be a smooth, compact 3 or 4 dimensional manifold constructed as the union of two helical solids joined
along a common boundary, with group actions defined by independent flips of chirality and orientation
on each unit helix. Let G be a finite abelian group (e.g., ∼= (C2)

n), representing these symmetries.
There exists a class of such manifolds (including the KTH construction) for which he space of all

smooth embeddings of X into Rn (for n ≥ 3) modulo G-action is bifurcated, containing at minimum two
connected components not related by any smooth isotopy if not more. This bifurcation arises entirely
from the abelian group action, not from geometric singularities or non-abelian topological defects.

The central point underlying this is as follows: the topology of the moduli space associated with
the first half of KTH4 fundamentally differs, under each group action, from the topology of the moduli
space of the second half, even though both invariants belong to the same abelian group. This structural
asymmetry appears to be novel in mathematics, and may offer a new perspective on the encoding of
digital information in manifolds. Specifically, the ability for information to transition between states
while remaining bifurcated by an intrinsic distinction could serve as the underlying principle for the
emergence of geometric computation.

5.8 Lancret’s Ghost?

Helices are mathematical objects rich in dynamical variables—as explored in the FHCM—whose prop-
erties interact synergistically but without the constraints of maximal symmetry. This very lack of
symmetry has led helices to be overlooked in algebraic geometry and much of pure mathematics. Yet,
as I have argued, maximal algebraic symmetry inevitably destroys geometric expressiveness—the very
quality needed for a dynamical system in the quasi-fluidic regime, where symbolic encoding of state is
essential. In fact, any form of computation requires at least some modicum of expressiveness, because
without it, one is left only with propositional logic. Helices can dance with zeros or ones, but a sphere
will never lie.

Remark 5.12. Perhaps the true reason Grothendieck and many modern geometers favor the coordinate-
free approach is not merely that it eliminates chirality, but that it immunizes mathematics against
Gödelian incompleteness. As long as one refrains from encoding mathematics—or, in this case, the
manifolds themselves—into numbers, the door to paradox remains shut. In a world of pure objects
and morphisms, there are no self-referential statements, and thus the incompleteness theorems gain
no foothold.

So despite their ubiquity in physical systems—from DNA strands to solitons to spiral galax-
ies—helices are strikingly absent from modern algebraic geometry. This omission is not accidental: the
standard helix is defined by transcendental functions (e.g., γ(t) = (a cos t, a sin t, bt)), placing it outside
the algebraic category. Algebraic geometry, by its very design, privileges curves and surfaces defined
by polynomials—algebraic varieties—over transcendental ones. But this prioritization systematically
filters out a wide class of naturally occurring, dynamically rich shapes: those that appear constantly
in physics, chemistry, and biology.

In this sense, the helix is a kind of orphan in the modern mathematical landscape: too smooth for
combinatorics, too transcendental for algebraic geometry, and too infinite for finite computation. Yet,
for a theory of geometric computation—especially one grounded in constructible physical objects—the
helix rightfully takes center stage.

55

Remark 5.13. Admittedly, helices can be derided as “overly constructed” or “engineered” objects. They
are most naturally described parametrically, as done earlier in this paper, or less commonly via implicit
Cartesian equations. While these are closed-form descriptions, they may lack the classical elegance
of curves defined purely by geometric or variational principles. The fact that helices are so “crafted”
may not be accidental; it reflects that both helices and the formalism of geometric computation are
fundamentally “user-centric”—whether one is specifying the parameters of the shape itself, or the
quantization of the computational model.

But why helices specifically? At present, I can only speculate. There is no general form for moduli
spaces of helical manifolds that exposes the deeper structure of these objects. Lancret’s Theorem
(1802) tells us that a space curve in R3 is a circular helix if and only if the ratio of its torsion τ to
its curvature κ is constant along the curve, i.e., τ/κ = C. This centuries-old result may hide much
deeper implications. In my view, constructing and characterizing the moduli space of helical manifolds
is the most urgent and challenging direction for future research. Such a moduli space is likely to be
highly complex—perhaps infinite-dimensional—an orbifold with wild local and global structure. The
expressive power of helices is remarkable: they admit a countably infinite variety of cross sections, as
well as parameters for twisting, pitch, and chirality, producing a vast configuration space. Mapping
this moduli space in detail will be daunting, even for a future (or present) Kontsevich. Nevertheless,
understanding its structure is crucial for advancing both the theory and applications of geometric
computation.

Helices are, in a sense, the maximally symmetric nontrivial curves in R3, interpolating between the
absolute rigidity of straight lines and the perfect closure of circles. They arise from the interplay of sine
and cosine—functions grounded in the geometry of the triangle, the simplest polygon that can exist
without curvature. There is a paradox here: the curve that best encodes three-dimensional symmetry
is ultimately constructed from the absence of curvature, via periodicity.

In physics, the triangle’s significance appears in unexpected places. Certain subatomic particles,
such as “glueballs” (hypothetical bound states of three gluons), suggest that the building blocks of
reality assemble in triplets—a resonance with the “magic number” of geometry, or perhaps simply a
reminder that nature delights in both symmetry and surprise. (For further discussion, see Section 6.6.)

While helices offer remarkable efficiency for encoding computational structure, it is important to
note that not all helices in nature are used for computation, nor do they dominate large-scale architec-
tures. Helical forms excel at packing information, facilitating transmission, and exploiting symmetry
at small scales (think, DNA and chiral molecules). However, at larger scales, nature often favors
other symmetries—branching, fractal, planar, or modular structures—driven by stability, energetic,
and functional constraints. Thus, the computational potential of helices arises not from their ubiquity,
but from their unique ability to localize and propagate information when conditions permit.

Though I have refrained from invoking specific biological or physical examples here, understanding
where and why helices give way to other forms remains a promising direction for research in computa-
tional chemistry and biology. Author recommends readers see Chouaieb et al [29] for a background on
the role of helices in nature and their emergence. Specific attention should be paid to figure 1 and 3—a
telling sign of what this moduli space might look like. Likewise, investigation should be done into the
niche body of research from Japanese geometers on Killing vector fields and their helical behavior. See
Adachi [30] as a leading example. As is so often the case in mathematics, the key to modern quantum
theory may be quietly lurking in the diagrams of a century-old German treatise (see Loria [31]) on
transcendental curves—waiting for someone to notice that helices and hyperboloids speak a universal
geometric language.

It is here that we now must stop and examine the cave which we have tunneled into. It is a beautiful
cavern with crystal clear flowing rivers and rich spiraling rock formations, but further exploration is
dangerous and requires specialized caving equipment. We will move on to more practical considerations
from here on out.

5.9 Spooky Action Up Close

What would a KL actually be able to practically compute reasonably better than a classic computer?
Engineering problems in designing such structures at scale aside, consideration yields a rather remark-
able conclusion.

Proposition 5.8. A KL can perform quantum-like computations without entanglement or superposi-

56

tion, in a fully deterministic manner.

Outline/Discussion. I understand this is a bold statement, and I must clarify at the outset that
quantum-style speedups for problems requiring non-local correlations (such as factoring or unstructured
search—e.g., Shor’s algorithm) remain out of reach for any deterministic system. GCMs do not, and
cannot, exploit quantum entanglement or wavefunction superposition.

Nevertheless, a KL can achieve “quantum-like” expressiveness by encoding highly correlated, non-
separable state information directly into their geometric and algebraic structure. Each GCM possesses
an internal state space determined by constraints of symmetry (chirality, orientation, topological flow),
and when composed into a KL, these constraints propagate deterministically through the system.
The resulting structure can simulate certain classes of computations—particularly those governed
by embedded symmetry or continuous deformation—more efficiently than traditional classical digital
architectures.

Unlike quantum systems, which achieve correlations via entanglement, GCMs leverage deterministic
correlations: the internal degrees of freedom are coupled by group or groupoid structure. This is best
understood as deterministic interference, rather than quantum interference. The group and groupoid
transitions in a KL act as compact logic gates, capable of manipulating multiple bits of information
in parallel, rather than the strictly local transitions of standard Boolean logic.

As the system approaches the fully fluidic regime, the computation becomes more analog in char-
acter: geometry and topology drive the computation via continuous, topologically constrained flows.
This mode is not universal in the quantum sense, but can offer dramatic computational advantages
for certain classes of problems where the problem structure matches the symmetry and constraints of
the underlying geometry.

In summary, GCMs achieve quantum-like parallelism and expressive power through deterministic,
geometric mechanisms, and not through quantum phenomena per se.

Regarding practical speedups, GCMs may offer computational advantages in the following broad
classes of problems:

Symmetry-Constrained Problems. These are problems in which global or local symmetries sharply
reduce the effective search space. Examples include group isomorphism, Cayley graph generation, and
orbit enumeration in algebraic combinatorics. Recent advances (see Babai [32]) suggest that exploiting
symmetry in problem structure can lead to dramatic algorithmic improvements—well aligned with the
built-in groupoid symmetries of GCMs.
Geometric and Topological Searches. This class encompasses tasks where the core challenge is
pathfinding or matching within highly constrained geometric or topological spaces. Applications range
from motion planning in robotics (see Sola [33]) to exploring configuration spaces in molecular chem-
istry, as well as embedding, packing, and shape optimization problems with nontrivial smooth boundary
constraints. GCMs provide a natural substrate for encoding and traversing such constrained search
spaces, especially when the constraints can be directly embedded as geometric or topological invariants.
Constraint Satisfaction Problems (CSPs) with Geometric Content. Many CSPs become dra-
matically more challenging—or tractable—depending on the geometric structure of their constraints.
Classic examples include folding problems, linkage configurations, and geometric realizability of graphs
(see Streinu [34]). GCMs allow the direct modeling of “fluid-like” consistency propagation, mirroring
the analog solution methods that have long been powerful in geometry and engineering.

Remark 5.14. Warning. The final item in the above list will naturally bring up questions the author
is not fully prepared to answer as of yet. While the Navier–Stokes existence/smoothness problem
is not directly addressed in this paper, the theory of geometric computability provides a conceptual
explanation for its notorious difficulty. The solution space of NS (and by extension—P vs. NP) is
so highly macro-expressive—it is rich in geometric and computational possibilities—that it outstrips
verifiability. The onset of turbulence and the possible breakdown of smoothness are manifestations of
the EVT: when computation becomes too expressive, predictability collapses. Thus, it is not merely
a technical challenge, but a symptom of a fundamental limit in the relationship between geometric
macro-expressiveness and mathematical micro-expressiveness.

As a consequence, the act of solving it is isomorphic to evaluating a subset of the infamous Busy
Beaver function, embedding all the undecidability and unpredictability of Turing-complete compu-
tation. In this light, the problem is not just hard—it is the mathematical analogue of an untyped,
unverifiable programming language.

57

Example 5.2. Cayley Graph Generation Under Geometric Computation.
As a practical illustration of geometric computational speedup, consider Cayley graph generation,

motivated by Babai’s algorithm as cited above, but primarily based on his earlier foundational work
with Luks [35] dealing with how efficient enumeration and transformation of group structures is crucial
to complexity-theoretic classification. While his construction focuses on abstract algorithmic bounds,
the geometric regime allows these traversals to be realized directly in physical topology via global flow
operations. This example explicitly situates itself within the quasi-fluidic regime of the FHCM model,
where discrete orientation states encode group elements and global operations directly correspond to
group generators.

Definition 5.6 (Cayley Graph). Let G be a finite group and S ⊆ G a generator set. The Cayley graph
Γ(G,S) is a directed graph defined as follows where nodes are elements of G. For each edge g ∈ G and
s ∈ S, there exists a directed edge from g to gs. Thus, a Cayley graph explicitly encodes the algebraic
structure of the group in combinatorial form.

In classical computation, the Cayley graph is constructed by explicitly enumerating all elements
and their associated edges:

Iterate over every group element g ∈ G.
For each g, iterate over each generator s ∈ S, creating an edge g → gs.

This classical procedure has complexity: O(|G| · |S|)
Classical Example: For the group (C2)

n:

Nodes: 2n

Generators: n
Complexity: O(n · 2n)

In the quasi-fluidic regime of FHCM, each unit (geobit) is identified with one group element. The
full lattice of n-geobits directly encodes the entire group (C2)

n:

Nodes: Each of the 2n lattice sites directly encodes one element of the group.
Generators: Each generator s ∈ S corresponds explicitly to a global geometric operation Ts applied
to the lattice.

Formally, let X denote the lattice, and let the operation corresponding to generator s be denoted as:

Ts : X → X, Ts(g) = gs ∀g ∈ G

Because each Ts acts globally and in parallel, it simultaneously creates all edges corresponding to
generator s. The operation is thus a parallel group action, whose complexity is O(1) per generator
operation. Hence, the geometric algorithm explicitly leverages global symmetry operations rather than
local enumeration.

The new geometric complexity analysis:

Apply each generator operation Ts once globally: The complexity per generator: O(1). The
total complexity for all generators: O(|S|)
Readout or explicit enumeration of all edges: still requires O(|G|), but the construction itself
is O(|S|).

Therefore, the geometric complexity is dramatically reduced to O(|S|). Concrete example is below.
Using our imaginary programming language

def fun cayley-populate-row(group, row) {

let: generators ⊂ Aut(group)

let: lattice → Grid[GCM]

let: state-init → group.identity()

// Initialize each column in the row with a unique group element

Foreach col in lattice.columns {

let: g ← group.enumerate(col)

set: lattice[col, row] := GCM[g, state-init]

58

Table 7: Classical vs. Geometric Computation in (C2)
4

Classical Computation Geometric Computation
Nodes: 16 (all group elements) Nodes: 16 (all group elements, initialized in

parallel)
Generators: 4 Generators: 4
Edges: 16 · 4 = 64 (each generator applied to
each node individually)

Global Operations: Each generator is
applied once globally, generating all edges
simultaneously

Total Operations: O(64) (one per edge) Total Operations: O(4) (one per generator)
Complexity: O(nk) for n nodes, k generators Complexity: O(k) (global, parallel

application of each generator)

}

// Apply each generator to the row in parallel

Foreach gen in generators {

broadcast: lattice[row] {

act: GCM ← GCM.apply(gen)

}

}

return lattice[row]

}

So to summarize, the Cayley graph of the abelian 2-group (C2)
n can be generated within an n-

geobit KL by applying exactly one global symmetry operation per generator. The complexity is thus:
O(n). This yields an exponential speedup compared to the classical enumeration, which is: O(n · 2n)

Conjecture 5.9 (Geometric Speedup Conjecture for Abelian Cayley Graphs and Geometric Compu-
tation Complexity Time). Within the framework of GCT, certain subclasses of the Graph Isomorphism
problem—particularly those arising from abelian 2-groups and their Cayley graphs—may admit an ef-
fective geometric encoding that bypasses classical enumeration. While this does not imply that GI is
solvable in polynomial time in the standard Turing model, it suggests that under geometric computa-
tion, these instances can be traversed and constructed with asymptotically fewer physical operations,
potentially indicating a distinct computational regime not captured by standard complexity classes.

In light of the existence of GCMs, we should not view quantum-like computation as a purely
quantum phenomena, rather it illustrates that the encoding of bit states as points on a manifold with
multi-axial symmetry can arise in purely classical, deterministic geometric systems. This suggests
that the abstract structure of qubit computation is a special case of a more general geometric logic,
rather than an exclusive hallmark of quantum theory. GCMs show that the essential “logic” of a
qubit is just the logic of a system whose state space is a sphere (or in our case related manifold) with
nontrivial symmetry group. I understand that is a bold claim, and again, I do not mean to diminish
the speedups granted by entanglement, as quantum computing still outstrips the power of classic or
geometric computing, but it possibly more of an ultra-powerful edge case at the end of a continuum.
See Tang [36] for a case study that demonstrates why clever deterministic approaches can perform on
par with quantum computers.

Remark 5.15 (Programming Language Outlook). Developing a programming language suited to geo-
metric computation remains a substantial challenge. However, physical realizations of non-Von Neu-
mann computing are not without precedent. While these machines build by MIT hackers of yore
may be mostly forgotten, the “tagged token” dataflow computer architectures of the 1980s [37] is an
instructive example of deterministic, non-standard models. Comparable experimental attitudes in-
formed projects like Butterfly LISP, an esoteric dialect engineered for parallelism across heterogeneous
architectures such as the BBN Butterfly and Symbolics LISP Machine [38]—demonstrating explicit
parallelism in software, even if the hardware was only partially faithful to the ideal.

For an actual language, I propose that a dialect such as “GeoLisp”—a LISP variant with Erlang-like
concurrency and native support for group and groupoid operations—would be a natural candidate.

59

LISP has already demonstrated its adaptability to non-Von Neumann paradigms, including quantum
computing [39]. Future progress in this direction will likely require close collaboration with compiler
experts and programming language theorists.

While large-scale geometric computers may depend on future advances in nanotechnology or mate-
rials science, it is hoped that the framework presented here may inspire new algorithms or pedagogical
approaches. Geometric computation is richer than most standard approaches to non-VN computation
like cellular automata, while still remaining deterministic, which avoids much of the confusion that
comes with quantum computing. So even if practical realizations remain distant, these ideas may help
to teach non-VN computation to students in a way that is intuitive and bridges group theory, topology,
dynamical systems, and category theory. 17

5.10 Chaos Unleashed

After assembling KTH in the abelian, subrecursive regime—where geometric computation is governed
by composable, finite operations on computable primitives—we enter the fluidic phase space. Here,
the helix structure is treated as a fiber bundle π : E → B, where the base B is a computably generated
manifold (e.g., subrecursive or piecewise-constructible), and the fibers carry smooth internal state
variables. Computation can be modeled as a flow along a connection ∇ on E, defined in a synthetic
differential geometric setting, allowing for infinitesimal evolution without reference to R. This regime
breaks the join symmetry; join operations become path-dependent, curvature encodes memory, and
noncommutativity emerges via holonomy and Lie groupoid structure. Computation thus proceeds by
the progressive internalization of curvature, transforming symbolic joins into geometric flows.

In the language of Lemma 3.5 this is when G(J) almost completely subsumes A(J). Via the chart
of n-logics we flip from a quasi-fluidic regime dominated by maximal abelianism to a purely fluidic
computational regime dominated by non-abelian structure. Though non-abelian groups are present
from the symbolic computing mode they are simply extensions of the initial abelian group. The shift
from abelian to non-abelian is when the true power of geometric computability is realized. Turing
completeness is surpassed again at this point. The actual shape of the geometry starts to resemble
an increasingly unstructured flow of water. Fully chaotic GCMs start to resemble streams of endless
information.

Going further, consider the case where a GCM loses all forms of quantization. As discussed earlier
in Section 3.6, there is a degenerate case corresponding to a KL in a 1×1 lattice. If a single GCM could
lose all notion of quantization, its information-theoretic capacity would become unbounded. Such an
object would, in some sense, become a KL—possessing arbitrary geobit capacity greater than any
discrete GCM, but without the use of symbolic composition with any other GCM.

However, if we assume infinite capacity in a single GCM, a fundamental limitation emerges: the abil-
ity to read out or write information vanishes. Computation subsumes communication—computation
may be infinite, but communication becomes impossible without a readout interface.

Conjecture 5.10 (Computation–Communication Tradeoff in GCT). There exists a fundamental
tradeoff between internal computability and external communicability (accessibility) in geometric com-
putation.

To formalize: let G(J) denote a GCM with quantization parameter J , and let N (G) be the number
of connections required to simulate a Turing machine. As J → ∞, the information-theoretic capacity
of G(J) diverges, but N → 0.

Remark 5.16. This phenomenon is directly analogous to the measurement problem in quantum theory,
and to limits on information extraction from chaotic classical systems. In practice, every real physical
system is subject to limits (such as the Planck length or thermal noise), so infinite computation is
always an idealization. A fully continuous GCM is, in principle, an oracle of infinite information, but
loses all capacity for communication, control, or interaction. Only by re-imposing quantization do we
recover a system that can read, write, and exchange information.

A classic lesson from computer architecture is Amdhals law. Scaling up computational capacity
whether by increasing memory, processing units, or geometric lattice size runs into an ultimate physical

17The author would like to note that the process of writing this paper has clarified some aspects of non-Von Neumann
computation for himself as well, even if just a bit.

60

barrier: the speed of signal propagation. Even if each individual GCM (as a idealized “mini-FPGA”)
can be made arbitrarily powerful via increasing the state group of each in a KL to Lie size, the maximum
rate at which the entire system can synchronize is limited by the time it takes for information to traverse
the system’s diameter. In an idealized setting where communication occurs at the speed of light c, the
maximum global clock frequency is bounded by

fmax ≤ c

2L

where L is the physical diameter of the computational lattice or network. As L increases, fmax falls
inversely.

In an idealized geometric computation system, the ultimate limit to system performance is set by
the speed of communication. No signal can travel faster than the speed of light. Thus, the maximum
clock frequency for global synchronization scales inversely with the system’s physical diameter. This
mirrors the constraints seen in classical computing hardware, where parallel scaling is ultimately limited
not by local processing power, but by the fundamental laws of physics. A KL does not offer infinite
power combined with infinite expressiveness.

Table 8 quantifies a hierarchy that demonstrates a natural algebraic-geometric progression inherent
in GCT. From discrete symbolic logic encoded in the simple abelian groups and low-dimensional
spaces, through progressively richer non-abelian algebraic structures, one eventually arrives naturally
at structures analogous to gauge theories and topological quantum field theory. Disclaimer: this is
still based only on modeling observations as of now. Future work will be needed to quantify
more rigorous boundaries of relationships.

Table 8: The Full View of GCT and Topological Computation.

Group Type GCT Model Topological Field Example
Groups

Embedding
Space

Abelian Symbolic
Mode KL

Finite group TQFT V4, (C2)
3 SO(3), SO(4)

Maximally abelian Quasi-Fluidic
Mode KL

Discrete gauge theory (C2)
4 SO(5)

Non-abelian Fully Fluidic,
Chaotic

Continuous gauge field
theory (Yang–Mills–like)

D4 ⋉ (C2)
4 SO(6)+

Simple Lie Emergent
Gauge
Models

Full-bore TQFT
(Yang–Mills,
Chern–Simons)

Manifold
bundles

SU(2), SO(N)

5.11 A New Frontier and an Algebraic Gap

At present, no known algebraic structures fully capture the behavior of computation
in GCMs across both symbolic (discrete) and fluidic (continuous) modes. The theory of
Lie groupoids and their relatives currently marks the “event horizon” of mathematical understanding
in this direction. Beyond this, no general framework of morphisms or categories is available that
accurately bridges a GCM’s geometry and its computability.

Indeed, as one transitions from discrete to quasi-fluidic regimes, finite algebraic structures quickly
break down; the underlying symmetries become too flexible, and the combinatorial invariants dissolve
into a sea of continuous dynamics. This suggests that an approach rooted in dynamical systems
theory—rather than classical algebra—is required in such regimes. Consequently, the use of the term
“algebra” here is necessarily loose and aspirational.

Below, I summarize representatives from several major algebraic families and outline their respec-
tive “failure modes” in the context of GCMs:

Boolean Algebra underlies classical digital logic, but it fails to capture the continuous deformations
and topological richness inherent in GCMs.

61

Heyting Algebra generalizes Boolean logic for constructive reasoning and partial orders. Though
the flows within a GCM may resemble a partial order, Heyting algebra does not directly encode
computability or the geometry of information propagation.
Lie Algebras are powerful tools for analyzing continuous symmetries and local properties of man-
ifolds via tangent spaces. However, GCMs are fundamentally global, topological objects, and Lie
algebras assume local linearization.
Quantum-style Algebras (Von Neuman, C*) These non-commutative algebras excel at describing
indeterminacy, entanglement, and operator structure. But GCMs, as formulated here, are fully deter-
ministic; there is no need for probabilistic or Hilbert space-based frameworks.
Algebraic Topology is a crucial piece of the puzzle no doubt when classifying and understanding the
global topological properties of GCMs. Nonetheless, by itself, it lacks a calculus for the computational
aspects intrinsic to these objects.
Group Theory and groupoid structures are central to the construction of GCMs, capturing symme-
tries and allowed transformations. Yet, pure group theory has no sense of the computational properties
necessary for Turing completeness; it needs to be layered on top.

Remark 5.17. What might a language for this kind of computation actually look like? Purely symbolic,
algebraic, topological, or analytic frameworks—taken in isolation—are inadequate. Any successful the-
ory must simultaneously address symbolic and information-theoretic composition of states, geometric
flow and deformation, topological boundaries and manifold joins, and the impact of computational
update laws on geometric structure.

Attempts to model the computational structure of GCMs using traditional algebraic systems en-
counter a fundamental obstacle: the nonlocal nature of constraint propagation across helices. This
structure resists both local linearization and naive discretization.

What is needed? A successful mathematical branch for geometric computation should support at
least four critical capabilities:

1. Continuous transformation: The language must represent continuous geometric changes (e.g.,
helix tube deformations, chirality flips, twist rate variations).

2. Local-to-global behavior: It must faithfully track how local computations propagate through
space and induce global effects.

3. Structural invariance and transformation laws: Orientation, chirality, and topological
identity must be preserved during flow—or, when altered, their transformation laws must be
fully expressible.

4. Rich morphism structure: The formalism should provide invertible morphisms corresponding
to computational transformations, which need not be group actions but should be composable
within a suitably rich structure (e.g., a higher category or groupoid).

The following areas of mathematics come to mind as to what might actually work:

Sheaf Theory and Stack Structures —help formalize the idea of local-to-global consistency which
is the core problem in GCT. One could cover a 3D/4D manifold with open sets {Ui}, each with a unit
helix state keeping track of its chirality, volume, number of twists, etc. A presheaf assigns to each
open set a set of computational states, and to each inclusion Ui ⊂ Uj , a restriction map. Sheaves could
ensure consistency and help capture distributed computation via continuous updates since different
regions perform local ops. In the fully fluidic regime, a GCM’s “chaotic geometry” is modeled as a
smooth moduli stack parameterizing all possible internal geometric configurations, with computation
realized as a smooth path or flow through this stack, governed by differential equations rather than
discrete update rules.
Topological Field Theories (TFTs) —associate algebraic data to topological spaces (see Lurie [40]
for an overview). It could model the evolution of a GCM as a path in the configuration space of the
manifold, and assign computational observables to each step. This may help recover a “topological con-
servation of information” principle for fluidic computation as topology remains stable under continuous
deformation giving a way to classify computable operations in a geometry-preserving manner.

62

Synthetic Differential Geometry and Jet Bundles — allow tracking of not just positions but
all derivatives up to order n. This is ideal for modeling how twists, flows, and orientations deform over
time and space. It encodes continuous flows and geometric deformation in one object. GCM states
can be modeled as evolutions over sections of fiber bundles. Computation then becomes differential
constraints on how these sections evolve similar to solving fluid-flow PDEs—but instead with a new
kind of “synthetic differential computational jet calculus” over the manifold.
Fluidic Type Theory (FTT) — This theory 18 posits a direct correspondence between types and
decorated geometric manifolds, such that:

Types — are classes of decorated geometric manifolds (e.g., helical, stratified with computational
data).
Terms — are specific geometric configurations of a manifold with particular parametric and compu-
tational attributes.
Id types — correspond to homotopy computational paths: explicit, decorated paths (including geo-
metric and computational operations) connecting configurations.
Π-types — model decorated fiber bundles over moduli spaces of morphisms
Σ-types — are composite geometric assemblies or glued manifolds with computational boundary data.

FTT, in this sense, unifies aspects of Homotopy Type Theory, Differential Geometry, and Computa-
tional Topology—anchored not in abstract sets, but in real, constructible manifolds with computational
semantics. The “extended homotopy hypothesis” conjectured herein suggests that such a theory could,
in principle, classify and verify the behavior of GCMs both numerically and structurally, opening the
door to a new computational mathematics.

Remark 5.18. The type theory proposed here should be confused with Geometric Type Theory. Pro-
posals for such a theory 19 are related to geometry of the coordinate-free variety, of which we cannot
practice. Naming has been chosen to avoid collisions. For those interested, see recent work by Von
Branitz and Buchhholtz [41].

There are of course many other avenues to explore. While as of now it seems not completely neces-
sary for basic GCMs, some application of higher category theory 20 will be necessary considering the
interpolation between many different areas of math to describe geometric computation. A Donaldson-
style moduli space and cohomological approach [42] also comes to mind as promising, but for the time
this list must suffice.21

Remark 5.19. A full algebraic description of the true behavior of a GCM likely demands a synthesis
beyond the reach of any single mathematician—a genuinely collaborative effort. The spirit of such
a project would require both the experimental, combinatorial perspective of Wolfram and an energy
I can only describe as “deeply Grothendieckian.” There is, perhaps, a certain irony in this. Were
Grothendieck alive today, he might feel profoundly ambivalent about this direction—despite the fact
that geometric computability theory owes so much to his vision of mathematics as a seascape of
ever-expanding generality. 22

18Admittedly, for the sake of intellectual honesty I must confess that this field of mathematics doesn’t technically
exist yet, but I am acting like it does nonetheless for convenience. Likewise we might also use the term “Bordism Type
Theory”, if a general purpose implementation related to Miranda at al.’s work is desired. It is open at this point.

19Nlab states—“At present it is not clear exactly how such a type theory should be defined.”
20I am indebted to Emily Riehl for her excellent video series/lectures on the subject.
21Please note that I withhold examination of the work of Prof. Donaldson here not out of lack of importance, but

because the formation of the a “Computational Donaldson Theory” requires an entire paper onto itself to do his great
work justice, in addition to a computational analogue of Floer.

22Though I will admit I now understand his distaste for physics, even if I personally do not share it.

63

6 Categorical, Philosophical and Practical Considerations for Geometric Computability

We now turn to the higher-level philosophy of GCMs and their implications, beginning with compu-
tational isomorphisms known from classical theoretical computer science.

Conjecture 6.1 (The Geometric Computability Thesis). For every GCM G = (M,Σ,Φ) with suf-
ficient geometric and topological richness, there exists a Turing machine T such that the symbolic
outputs of T are isomorphic to the boundary outputs of G under Φ, and vice versa.

Stated informally: Every computational process that can be computed by a TM can be computed by
a KL.

This is, in spirit, an analogue of the Church–Turing Thesis, transplanted into the realm of geometric
computability. As with the Church–Turing Thesis, it is best regarded as a conjecture—a foundational
principle rather than a theorem. Its true justification comes from the robustness of computation
models, not from formal proof.

Conjecture 6.2 (Geometric Logic Isomorphism). For every Turing machine T , there exists a KL
such that

evalTM (x) ∼= evalKL(x)

where the correspondence is structure-preserving (i.e., it is an isomorphism of computational processes,
not merely of outputs).

This second conjecture aspires to a deeper, type-theoretic structural isomorphism in the spirit of
the Curry–Howard correspondence: strict equivalence between symbolic computation and geometric
computation, with the mapping respecting computational structure at every level. As with much
of Curry–Howard–Lambek theory, the precise formalization of this correspondence in the geometric
setting remains an open challenge. The notation here is necessarily somewhat informal.

The study of homotopy computation will once day help illuminate this issue, and again I stress that
all topological spaces have these homotopies via the fundamental groupoid, but most lack the correct
symmetry for actual computation, compared to a transcendental curve such the helix. Algebraically
however, we are in a territory that is only beginning to be explored. The study of these “homotopic
computational paths” may one day clarify the landscape, but the full machinery of a “fluidic/bordism
type theory” (capable of understanding the symbolic composition of GCMs) has yet to be developed.

6.1 Constructing Categories

While the author is not a specialist in category theory, it is clear that the algebraic enrichment re-
quired for this framework demands categories capable of encoding both geometric and computational
structure. To this end, we introduce the category ESM+ (“Embedded Smooth Manifolds with En-
richments”) as the natural habitat for all GCMs. For background, see Blass [43].

Definition (Ambient Category). The master category ESM+ is defined as the symmetric monoidal
category whose objects are geometric, smooth, or computational manifolds (including all GCMs), and
whose morphisms are smooth maps or structure-preserving transformations that respect both geometric
and computational enrichment. The symmetric monoidal structure encodes the physical and logical
composition of systems (e.g., juxtaposition or parallel flow).

Within ESM+, we distinguish the following subcategory:

Definition 6.1. A computational topos (CT O) is a cartesian closed symmetric monoidal category
E whose objects are GCMs or related computational geometric structures, and whose morphisms
preserve both geometric and computational structure (including, for example, groupoid decorations
or logic assignments). The internal logic of E models computability—whether partial or total, binary,
fuzzy, or otherwise.

The monoidal product (typically denoted ⊗) captures the parallel composition or aggregation of
independent GCMs, while the cartesian closed structure enables internal logic, function spaces, and
higher-level constructions. These categorical properties are essential for modeling both the logical and
physical composition of geometric computation.

64

Rec EGCM CT O

GCM

F Internal Logic

U

Rec - Category of all recursive computations
F - Functor embedding Rec into CT O
EGCM - The computational topos of GCMs
U - Underlying geometric manifold functor
Internal Logic - The internal language/topos logic

To ensure the existence of computational fixed points within the categorical framework, we require
the category to be both cartesian closed and enriched with a domain structure. Specifically, complete
partial orders (CPOs) on its subobjects. This combination supports fixed point theorems (Kleene)
essential for modeling recursion and partial computations. Establishing and characterizing such en-
richment in the context of geometric computation is left to specialists in the field. See below for a
probable outline.

Computational Topos of GCMs (EGCM)

GCM Internal: Cartesian Closed,
CPO-enriched

Topos Logic: Subobject
Classifier, Fixed Points

U

Internal LogicCPO-enrichment

Geometrically Computable Manifolds — (GCM) and the Computational Topos (EGCM) of GCM.
A computational topos EGCM is a cartesian closed subcategory equipped with an internal logic of com-
putation, supporting fixed-point and recursion theorems. GCMs, be they chaotic process or discretely
chained in a KL, will have objects EGCM are specified by boundary data (input/output), and mor-
phisms are internal symmetries or transformation flows, closed under composition. Composition will
involve the chaining these geometric transformations or the composition of various GCMs in sequence
into a KL.
Sh(x) — The category of sheaves will help us understand local to global behavior of the geometry.
The category is a space that is rich in limits, colimits, and functorial constructions. Together it gives
a way to treat geometry, logic, and computation within a unified categorical glue language.
Man∞ — The category of all smooth manifolds, which serves as the geometric “building block”
for GCMs. While not every smooth manifold need be a GCM, this category includes all possible
n-manifolds, which may serve as cross-sections, spatial domains, or higher-dimensional GCMs. Mor-
phisms are smooth maps such as diffeomorphisms, immersions, embeddings, and related structure-
preserving maps.
Fix(f) — Both chirality and orientation are observer-dependent phenomena. To account for this,
we introduce fixed reference frames: a distinguished hyperplane (or set) of fixed points, representing
“observation structure” within the category. Morphisms in this context are required to preserve these
fixed points. Since chirality is observer-relative, we may formalize this via a contravariant functor:

V : Oop → GCM

where O is a category of observers or reference frames, and V assigns to each observer a GCM as seen
from that frame.
Grd — The category of groupoids (with Grp as a subcategory) encapsulates the symmetries and
allowable transitions—logical, geometric, or dynamical—of GCMs. Groups model global reversible
symmetries (e.g., V4, D4), while groupoids allow for partial or local symmetries, where not all elements
are connected. Objects in Grd are finite groups or Lie groupoids acting on spaces or sets; morphisms
are group or groupoid homomorphisms. Every step of geometric computation in this framework is
fundamentally a group or groupoid action on the current state.
SGCM — The category of state spaces SGCM will handle the logical the configuration space contained
in CT O. The existence of group actions and computation must also be accounted for. Encompasses

65

all possible logical/geometric states of a GCM. Each GCM has a finite (symbolic) or infinite (fluidic)
state space, determined by its geometry and group actions. It encodes “where” in the computation one
is. Objects are sets or manifolds parameterizing possible GCM configurations. Morphisms are maps
(possibly group-equivariant) between state spaces, corresponding to allowed transitions. For symbolic
regime, a finite set with group action and for fluidic, a manifold with a diffeomorphism group. We
define a functor

C : GCM → BitStreams

which interprets each object’s discrete symmetries as initial conditions, and morphisms (flows) as state
evolution.
Vectk — The category of vector spaces provides the linear structure necessary for modeling flows,
quantum analogies, and information propagation. In symbolic computation, encodes possible linear
combinations. In fluidic computation, the tangent and cotangent spaces at each point in a manifold
are vector spaces critical for defining flows. Objects are vector spaces over a field k (often k = R or
C). Morphisms are simply linear maps between vector spaces.

Commutative diagrams can be used to effectively show the action of a GCM where: S, S′, S′′ are
state spaces, and g, h, g′ are groupoid morphisms or actions.

S S′

S′′

g

h
g′

As well as a pushout map for the topological construction of KTH itself.

B HA

HB HA ∪B HB

iA

iB

The following is a “meta-map” (not a commutative diagram per se) that overlooks the landscape
of GCT via its categories and their functors. Designed to show the input of fixed geometry → “central
cycle” of computation → to stateful change.

FP SM GCM SGCM

G SH

Defines

Geometry

Constructs

Computability
Mutates

Sheaf

Assignments

Group

Actions Defines

Legal Actions

Conjecture 6.3. Geometric Fixed Point Hierarchy Conjecture. There exist faithful functors between
the categories of observer frames, geometric fixed points, and computational fixed points, such that
invariants at one level are preserved at the next. The precise nature of these functors—whether full,
faithful, adjoint, or otherwise—remains an open question for future categorical analysis. Or, more
formally:

O faithful−−−−→ G faithful−−−−→ C

such that the structure of fixed points at the observer level is preserved and reflected in the geometric
fixed points, which in turn induce fixed points for computational processes defined on or relative to the
underlying geometry. Fullness may not always hold globally, but is expected in restricted or “well-
behaved” subcategories.

The study of fixed points has been central to mathematics for nearly a century, particularly at
the intersection of topology, geometry, and algebra. Early work by Solomon Lefschetz in the 1920’s
provided algebraic tools for detecting fixed points of continuous maps via what is now known as
the Lefschetz fixed point theorem. In the 40s, P.A. Smith developed a foundational theory relating
group actions on manifolds to the structure of their fixed-point sets (now called “Smith theory”)

66

which remains fundamental in transformation group theory. By the mid-20th century, the framework
of equivariant cohomology, pioneered by Borel, Atiyah, and Segal, offered a systematic language for
encoding symmetries and their influence on topological invariants, especially fixed points and invariant
subspaces. These developments are all related by a deep connection, that the existence and structure
of fixed points under symmetries often reflects, and sometimes dictates, the global topology of the
underlying space.

The current work extends these classical perspectives to the setting of geometric computation,
positing a natural hierarchy between three kinds of fixed points:

1. Observer-invariant reference frames

2. Geometric/dynamical fixed points arising from diffeomorphisms or group actions

3. Computational fixed points, as in recursion theory or logic.

I conjecture that these layers are connected by functorial correspondences, reflecting a geometric-
computational analogue of the classical theory. In particular, invariant hyperplanes or subobjects in
O induce fixed sets in G (Smith and Lefschetz), and these in turn anchor or determine the existence
and interpretation of computational fixed points (Kleene or domain theory) in C. So in the end, the
structure of geometric computation appears to be, as the saying goes, “fixed points all the way down”.

6.2 Implications for Reversible Computing

GCT opens an avenue for reversible computing.[44] In reversible computing, computation works more
like the laws of physics, running both backwards and forwards. This is obviously a desirable property.
Data is not overwritten like the tape on a Turing Machine. More formally, a reversible computation is
a functor

F : C → C ∃x | F−1 : C → C

with

F ◦ F−1 = idC

In the case of group-based computing, the symbolic-only mode, this means every computation is a
bijection on state space, that is, an automorphism. In group-theoretic terms:

∀g ∈ G,∃g−1 ∈ G such that gg−1 = e.

Thus, computation becomes a path through a groupoid where partially recursive functions are
enabled, supporting the claim that information is never fundamentally lost, only transformed. One
can imagine a flow of fluid going in one direction, but suddenly reversing in another back to its
original state. For example, one can picture a fluid flow reversing direction and restoring its initial
configuration, or a KTH in which unit helices exchange twist factors and then “rewind” their evolution,
returning the system to its starting state via composed reversible operations.

Let M be a GCM. Let
ϕt :M →M

be the flow map from a vector field or group action, where t ∈ R is time. If ϕt is a diffeomorphism for
each t, and

ϕ−t = ϕ−1
t

then the evolution law is classified as reversible.

6.3 Comparison to Blum-Shub-Smale Model

A foundational precedent for my approach can be found in the Blum–Shub–Smale (BSS) model [45]
of computation, which extends classical computability theory from the discrete domain of N into the
continuous field R. In the BSS model, the computational machine (“BBS machine”) operates over
the real numbers, with registers that hold real values, and instructions that perform real arithmetic
or conditional branching over those values. It defines recursive functions over R, enabling a theory of
complexity and decision problems in R-space.

67

However, the BSS machine is fundamentally algebraic and analytic in its structure. It is built over
field operations and assumes the availability of real-number arithmetic at unit cost. This decision
leads to rich mathematical structure, but one that remains semantically symbolic, not physical. In
contrast, GCT builds a theory of computation grounded in topological and geometric structure, not
just symbolic algebra. While a BSS machine generalizes the register machine, a GCM generalizes the
state space itself. That is, the BSS model retains a fixed architecture and extends the data, while a
GCM lattice changes the nature of computation itself by encoding operations directly into the geometry
and deformation of manifolds in a non-Von Neumann style.

Where the BSS machine assumes access to uncountable numbers of real values, a GCM lattice
assumes access to geometric substructures and continuous group actions as primitive. Computation
arises not from the manipulation of symbols or numbers, but from the controlled evolution of geometric
state, driven by fluidic flows, chirality shifts, and manifold deformations and so on.

This moves us closer to a physical theory of computation, where space, time, and shape are no
longer external to computation—they simply are the computation.

6.4 Computing the Uncomputable?

As a short aside, it is natural to ask whether geometric or quasi-fluidic computational models might
transcend the limits of classical computation, such as those demarcated by the Busy Beaver func-
tion [46]. However, as long as the system remains deterministic and locally finite, the Busy Beaver
remains unassailable. Its uncomputability is a structural, not architectural, phenomenon. True tran-
scendence of computability, if it even exists, lies only in the geometric analog/chaotic regime, which
leaves the discrete computational universe altogether and eventually transcends into the realm of
outright gauge symmetries. So while the Busy Beaver function represents the ultimate barrier for
computable functions in classical, discrete models, both a BSS machine equipped with a sufficiently
powerful oracle and a GCM operating in the fully fluidic regime can, in principle, transcend this barrier.

6.5 Relationship to Topological Kleene Field Theories

Miranda, Peralta, and Gonzales [47] have recently introduced Topological Kleene Field Theory (TKFT),
which advances the understanding of fluidic computation beyond classical Turing completeness.

At the heart of TKFT is the notion of a smooth dynamical bordism—a manifold connecting multiple
disk boundaries, within which computation unfolds as a flow governed by partial recursive (reaching)
functions. In this framework, computation is realized as trajectories in a Hilbert space, and the “pair
of pants” topology elegantly encodes program branching, granting TKFT both expressive power and
a high degree of abstraction.

However, the GCMs central to our theory do not naturally inhabit n-dimensional Hilbert spaces.
This raises a conceptual question (echoing the cobordism hypothesis): how should we interpret “bor-
dism” when the manifold itself is the computational substrate, rather than a medium mediating be-
tween external boundaries?

Definition 6.2 (Geometric Fluidic Computational Bordism). Let M0 and M1 be n-dimensional ge-
ometric computational manifolds (GCMs). A geometric fluidic computational bordism is a smooth
(n + 1)-dimensional manifold W (possibly with additional structure: flows, group actions, computa-
tional data) such that ∂W = M0 ⊔M1. The bordism W represents the explicit geometric realization
of a computational transformation, encoding the process or “flow” from M0 to M1.

In GCT, a more intrinsic and lightweight perspective is natural. Here, bordism is internal to
the GCM: computation is realized as deformation or flow between different boundary states within
the manifold itself. The “input” and “output” boundaries correspond to loci where topological flows
implement morphisms. As currently formulated, TKFT operates at a computational power compara-
ble to our FHCM—the quasi-fluidic, maximally abelian regime of geometric computation. TKFT is
constructed over countable topological fields (N), exploits the full power of recursive and automata-
theoretic computation, and can recursively evolve its own computational history; nevertheless, it does
not reach the uncountable or geometric-analog domain.

If TKFT aspires to capture the laws of fluidic computation in terms of a general-purpose “CPU”
architecture—capable of universal computation via smooth dynamical flows—then GCT can be viewed
as a more discrete, helical “GPU”: a specialized, fuzzy, and highly efficient processor for geometric

68

tasks. Thus, GCT is not a competitor to TKFT, but a complementary framework, with distinctive
strengths and tradeoffs. In principle, both approaches can be used in concert to address fundamental
problems in topological physics from different vantage points.

It will be fascinating to observe how these approaches rooted in TQFT, TKFT, and now GCT,
develop in parallel, potentially converging to a deeper, unified mathematics of fluidic computation.

6.6 Computational Gauge Theory and the Yang-Mills Mass Gap Existence

(a) BPST instanton: a finite-action, localized topo-
logical solution to the Yang–Mills equations, exhibit-
ing geometric twist and winding.

(b) Complex quantum wave: a superposition of oscil-
lations, illustrating the intertwined, helical modes of
computation in the geometric framework.

Figure 8: Some Interesting Examples of Geometric Configurations Corresponding to Type 3 and Type
1 KTH.

The area between mathematics and physics has been a great source for fertile cross pollination of
ideas with work from mathematicians like Kontsevich [48], Connes [49], and physicists like Witten [50]
tackling questions related to quantization, fundamental force symmetries, and spin to name but a few.

Twin helix systems show up in a surprising number of physics systems. As an example—for any
solution to the free-particle Schrödinger equation, KTH Type 1 can be interpreted as the real and
imaginary components, intertwined, with the joint at points of equal phase:

Ψ(x, t) = Aei(kx−ωt)

ℜ[Ψ(x, t)] = A cos(kx− ωt)

ℑ[Ψ(x, t)] = A sin(kx− ωt)

Plotting against the x-axis we get a helical system spiraling through space. The two components
are phase-shifted by π/2, so one spirals left, the other right, relative to the phase progression forming
the “moving helical orb” in 8 resembling the Type 1 KTH. Helices appear in a number of other
areas. To name but a few: photon polarization is a classic example, Dirac and Weyl spinors have a
geometric representation as helices on the Bloch sphere, and more recently, Majorana fermions have
been proposed to manifest as topologically protected twin-helix states in condensed matter systems [51].
These are not just simple coincidences, but instead speak to the deep geometrical roots of quantum
phenomena.

Recent and highly invaluable work by Bliokh et al. [52] has demonstrated that the surface Maxwell
modes at media interfaces are governed by a topological invariant valued in Z4. Their approach,
rooted in phase winding, represents a major advance in our understanding of topological invariants in
photonic systems.

However, in my view, this classification does not fully account for the independent binary sym-
metries present in the physical configuration—specifically, the left/right and up/down combinations

69

encoded in a KTH4 construction. While the choice of Z2 × Z2 as an invariant is logical within their
framework, a reformulation in terms of the Klein four-group V4 more accurately reflects the underlying
symmetry structure. This viewpoint directly parallels the 2-geobit state space, providing both a more
granular symmetry classification and a richer foundation for both physical insight and computational
applications.

Remark 6.1 (Dual Helicity Join Structures). There exists a fundamental duality between helices joined
at their bases and those joined at their apexes. In the context of geometric computation, we define
KTH manifolds as those helices that join smoothly at their bases, forming a continuous manifold with
no topological singularity. These are designed for deterministic logic flow.

By contrast, helices joined at an apex are familiar from physical models of spin, Dirac operators, and
helicity transport. Such structures are inherently singular at the join point and correspond to sources,
sinks, or field singularities—examples include optical vortices, Dirac cones, or other topological defects.

This duality is summarized below:

Feature Twin Helical Manifolds Apex Twin Helix

Join point Smooth base join Singular apex join
Topology Globally smooth manifold Manifold with point singularity
Flow Bidirectional Radial (source/sink)
Purpose Logical/computational flow Field excitation, spin transport
Chirality Controlled by local geometry Emerges from singularity
Singularities Avoided (non-singular) Essential (Dirac monopoles)
Field role Symbolic/geometric logic Physical spinor dynamics
Interpretation Topological logic circuits Helicity-driven field structures

This duality demonstrates that helicity can play two conceptual roles: in geometric computation,
smoothness enables information flow, but in topological physics, singularity encodes conserved charges.

As established throughout this work, helices exhibit exceptionally rich geometric behavior. The
pre-quantum computational geometry of twin helices, characterized by the expressive potential of
geometric flows and deformations, may thus provide a substrate from which quantum phenomena—such
as the discrete state spaces of spin foam models—naturally emerge. Rather than postulating quantum
discreteness as a primitive, it is reasonable to view quantum structure as arising as an invariant
or stable phase of the underlying computational dynamics, much as solitons and topological defects
emerge from continuous systems. Quantum spin networks arise via coarse graining of the underlying
micro-geometry of helices.

Remark 6.2. Although this paper does not aim to engage in ongoing debates over the unification
of physics, it is worth noting that the geometric computation model developed here vindicates the
combinatorial and categorical perspectives advocated by Sir Roger Penrose, John Baez, Carlo Rovelli,
and other proponents of Loop Quantum Gravity. In addition, it closely aligns with the non-Markovian
view of quantum mechanics espoused by physics philosopher Jacob Barandes [53]. 23 In this view,
discrete quantum geometry emerges as a natural phase transition within a more general, continuous
geometric logic—without the need to discard the underlying manifold structure. Indeed—it is true
poetry of nature that the geometric “DNA” of quantum mechanics might echo that of life itself.

Remark 6.3. Although the constructions in this paper have been of the more categorical variety, it
would be amiss not to note that Twistor theory, pioneered by Penrose and Rindler [54], achieves a stun-
ning algebraic encoding of geometric and conformal symmetries in four dimensions, providing powerful
tools for the study of massless field equations and scattering amplitudes. GCT encompasses twistors
as its fundamental limit case: they appear precisely where the state space of computation exhibits
continuous ω-logic, and the algebraic closure group is maximally abelian or even fully continuous (e.g.,
SO(2)). Thus, twistors become a distinguished phase within a far broader universe of transcenden-
tal, computational geometric structures—a special case of the general principle that geometry and
computation are deeply intertwined. 24

23We reject superdeterminism not only for physical reasons, but on cultural and epistemological grounds: any theory
that precludes all genuine choice is incompatible with both the Rabbinical tradition and the mathematical spirit of
independence proofs. Following the Sages, we interpret free will as path-dependent randomness—a process neither
strictly determined nor wholly unconditioned, but always shaped by prior steps.

24I must confess this is (yet again) ironic: Complexity and Real Computation opens by referencing Penrose—not on
physics, but for fractals. Yet both twistors and the BBS model are, in reality, the prime examples of continuous algebraic
computational flow.

70

As time is constrained, the example of a potential application of GCT I would personally would like
to highlight would be that of the infamous Yang-Mills Mass Gap Problem. The examples listed below
illustrate how certain nontrivial solutions to the Yang–Mills equations—and related field theories—are,
in fact, naturally helical:

Calorons: Periodic instantons in gauge theory [55].
Sphalerons: Unstable saddle points in electroweak theory [56].
Twisted solutions: Solutions over compactified or cylindrical spacetimes [57].
Witten’s helical solutions: Helical structures in certain lower-dimensional reductions [58].
Non-abelian plane wave solutions: Chiral, twist-like structures in non-abelian gauge theory [59].

While this discussion does not claim to exhaust the intricate connections between geometric com-
putation and modern field theory, it is worth highlighting the specific case of the Yang–Mills Mass
Gap Problem. But, as illustrated in Figure 8a, one can see that the gluing of two helical manifolds
at a common boundary can form a topological structure directly analogous to the BPST instanton of
Yang–Mills theory.

Each unit helix manifold HA, HB can be modeled as open sets UA, UB ⊂ M , each equipped with
a local trivialization of the associated bundle—that is, local “coordinate patches” where the fiber
structure is simple. The gluing of two helices at their base corresponds to identifying the bundles
over the intersection UA ∩ UB via a transition function gAB : UA ∩ UB → G. In gauge theory, such a
function is interpreted as a gauge transformation; geometrically, it is a diffeomorphism on the base and
a G-action on the fibers. Deformations and transitions between these glued manifolds encode discrete
topological information, serving as geometric analogues of bit-flip operations. Thus, each unit helix
in a GCM can be interpreted as a topological soliton, and computation in this framework is deeply
connected to the instanton sector of gauge field theory. This suggests that geometric computability
provides the natural foundation for a “computational Yang–Mills” framework—one that treats a GCM
as a fiber bundle in low-dimensional topology, enabling the construction of a mathematical theory of
computational gauge fields.

Local Helix Chart (UA) Local Helix Chart (UB)

↓ ↓

Bundle Trivialization P |UA
Bundle Trivialization P |UB

Transition Function

gAB

The diagram above encodes the configuration space of these gluings: the resulting moduli space
is precisely the structure used in Yang–Mills theory to describe instantons. Thus, geometric compu-
tation in this regime is naturally understood as computation within the moduli space of topological
solitons. For the foundational theory on the geometry of Yang-Mills fields, see Atiyah [60]; for a
modern perspective, see Donaldson [61].

In the geometric computation framework, abelian solutions correspond to the stable storage and
propagation of data—periodic, commutative, easily reversible. Non-abelian solutions correspond to
the transformation of data: their flow actively encodes logic gates, information processing, and state
transitions that cannot be reduced to simple, commutative propagation. The highest level—full gauge
regime allows for history-dependent, topological computation, where even the process of transitioning
between states (as in sphalerons) becomes part of the logic.

Example 6.1 (The Computational Consequences of Non-Abelian Plane Waves). As an example to one
solutions of the cited above, consider the appearance of non-abelian plane wave solutions as described
by legendary Harvard physicist Sidney Coleman.

L = Lextr. = −1

4
tr(FµνF

µν) =
1

2

n∑
a=1

[
(Ea)2 − (Ba)2

]
=:

1

2
(E2 −B2).

This is discussed by Kastrup in [62] where he notes (with some exasperation) that when electric and
magnetic energy densities are equal, E2 = B2. This signals more than a mere mathematical curiosity.
In the context of geometric computation, these solutions have profound consequences. Unlike their
abelian counterparts, non-abelian plane waves possess internal “twist” and holonomy: as the field

71

propagates, its configuration traverses nontrivial paths in the gauge group manifold. This means the
solution itself acts as a dynamic, information-carrying process capable of encoding group-theoretic
state transitions as it evolves. Kastrup’s observation that L = 0 defines a bifurcation hypersurface in
field space directly parallels the notion of a logic gate or switching surface in computational theory.
In this geometric framework, the set of such plane wave solutions forms a universal “signal alphabet,”
providing the basic computational flows (or gates) within the field theory. Thus, the Yang–Mills
equations do not merely describe static states, but embody a rich logic of state transitions—realized
physically as flows through field configuration space. This connection justifies treating these classical
solutions as concrete “geometric logic gates”: they demonstrate that the fabric of non-abelian gauge
theory naturally supports computational processes, with the group structure supplying the logic and
the geometry supplying the flow. Nature may be lazy, but she is also expressive.

Table 9: Geometric Computation Regimes and Particle Physics Phenomena

Abelian Regimes Non-Abelian Regimes

Symbolic Quasi-Fluidic Fluidic Gauge

Discrete logic states,
stable storage

Periodic or cyclic state
transitions,
memory elements

Data dynamically
transformed by
non-commutative flows

Topological transitions,
history-dependent
computation

Classical EM fields,
digital bits

Calorons, periodic
instantons,
“clock” solutions

Non-abelian plane waves
(Coleman),
helical/twisted solutions
(Witten)

Sphalerons, instantons,
tunneling between vacua

Earlier in this paper, an executive decision was made to work within R4, rather than remaining in
R3, thereby abandoning Type 2 KTH and focusing on the subgroups corresponding to Type 1, 3, and
4 KTH. This choice was motivated, in part, by the formulation of the Yang-Mills mass
gap problem itself. Recall that the official statement is:

Prove that for any compact simple gauge group G, a non-trivial quantum Yang–Mills theory
exists on R4 and has a mass gap δ > 0.

R4 is equipped with its standard Riemannian (Euclidean) structure, as required by the context of
the mass gap problem. GCMs, being smooth manifolds with boundary, naturally inherit a Riemannian
structure. While discrete gauge theories have been explored for decades, as Jaffe and Witten note,
they remain insufficient for a full resolution of the Yang-Mills problem [63].

Remark 6.4. While the physical Yang–Mills mass gap is posed over Minkowski spacetime R1,3, my
model operates in a purely spatial 4-manifold, using the fourth spatial dimension to encode extended
chirality-resolving structure (e.g., the Type 2 Twin Helix). Time-evolution in our system is replaced
by global pulses or flow propagation, yielding an internal clocking structure without invoking temporal
metrics.

Remark 6.5 (Comparing Lattice Gauge Theory and GCM Lattices). Lattice gauge theory provides a
discretized model of gauge field dynamics, using an external lattice as a computational scaffold. While
it preserves local symmetries and allows for numerical simulation, the continuum limit remains prob-
lematic, and computability is not intrinsic to the mathematical structure. By contrast, a GCM lattice
encodes its state space, symmetry, and allowed transitions intrinsically via computability principles.

The “lattice” arises from the manifold’s own group-theoretic and topological constraints, ensuring
that spectral gaps and forbidden transitions are a direct consequence of the system’s geometry, not an
artifact of discretization. Thus, a KL could serve as a fundamentally computable model of gauge field
dynamics, where geobits play the role of discrete, intrinsic gauge degrees of freedom. 25

Remark 6.6 (Issues with Hyper-Turing Complete computation over R). It is at this point however
a problem I have so far put aside rears its head—actually modeling the computation. Recall table
8. As one approaches the full-bore fluidic computation needed to model the Yang-Mills equations in
a simple Lie group, typical notions of computability (Kleene) effectively break down. In this limit,
one must appeal to topological, categorical, or quantum invariants to encode information, and the

25“It’s nice to have a framework where you can only have one Lagrangian, but it would be even nicer to have some
reason that this particular algebra would inevitably appear as an answer to some question.” -Edward Witten [64]

72

notion of computation becomes vastly more abstract. Whether any kind of programmable or scalable
computational formalism can survive in this context remains an open question.

In principle, to implement the gauge regime, it could be modeled with a very powerful fluidic
GCM that computes over R, but as we know from the lessons of the BBS machine—this is a difficult
beast to control. This is why again I mentioned synthetic, not regular differential geometry as the best
course of action in the two uppermost regimes. Although the halting problem can technically be solved
with an unrestricted approach over the reals, this involves the execution of borderline reality-warping
computability hacks such as branch functions encoding oracle operations.

And even then, computations that are trivial in N can become impossible to decide in R. Certain
“gaps” or spectra might only be accessible or defined via limit processes or transcendental solutions
that cannot be encoded finitely. If the only way to “compute” or even “define” the mass gap uses some
non-recursive real, the problem is, in a sense, nonconstructive and incomputable. The BSS model over
reals demonstrates that “hypercomputation” with real numbers without restrictions is vastly more
powerful, and in fact can be quasi-pathological or even unclassifiable in the regular Turing-complete
sense. This leads to a sad possibility:

Conjecture 6.4 (Lost Melody Conjecture for the Yang–Mills Mass Gap). Let S be the solution space
of (quantum) Yang–Mills fields over R4, as formulated in the Clay Millennium Problem. Suppose the
mass gap ∆ > 0 exists: that is, there exists an energy difference between the vacuum and the first
excited state.

Then, in the setting where S is modeled as a space of real-valued (Schwartz, Sobolev, or distribu-
tional) functions:

1. There exists a real number r∆ encoding the value of the mass gap such that r∆ is recognizable
(in the sense of infinite time or real computation: BSS/ITTM machines), but not computable
(i.e., there is no finite algorithm—classical or transfinite—that outputs r∆).

2. The existence of such a mass gap is, up to isomorphism, a “lost melody” real: there is no effective
procedure to construct or compute the gap, but its value can be “verified” if presented as input.

3. The recognizability–noncomputability boundary in the Yang–Mills mass gap is isomorphic, in
the sense of descriptive set theory and infinite computation, to the phenomenon described by the
Lost Melody Theorem for BSS/ITTM machines.

4. In particular, if the Yang–Mills mass gap is posed over the full continuum, then the problem is
undecidable in the constructive sense. Any constructive proof must restrict the solution space to
computable, algebraic, or otherwise “tame” settings.

I conjecture that the Yang–Mills mass gap problem, as posed over the full continuum of real-valued
field configurations, is isomorphic to the Lost Melody Theorem in infinite computation: its solution
may be recognizable but not computable. That is, the mass gap is a “lost melody” real—provable to
exist in principle, but forever unconstructible by algorithmic means. This suggests that the problem is
undecidable in R, and that a constructive solution is only possible in a suitably tamed mathematical
universe.

Originally, the author hesitated to include this conjecture, but given these limitations, we must fully
accept that even if the entire mathematical apparatus was developed to attempt such a calculation,
it may not be possible to model mass gaps in R. The limitations discovered by BSS, and before that
Turing and Gödel, still haunt the boundaries of the mathematical universe. Our new tools bring us
closer, but cannot guarantee victory in all cases. It may be a song that can be heard, but never fully
sung.

Remark 6.7. Full treatment of the Lost Melody Theorem is beyond scope here, see Carl [65] for recent
proof on the BBS model and Hamkins and Lewis [66] for the original background. The theorem
is completely unknown outside the study of specialized computational logic, but a result verifying
this conjecture would not be without precedent—see Cubitt et al. [67] for a quantum treatment on
the undecidability of spectral gaps using lattice Hamiltonians demonstrating that certain physical
properties in quantum many-body systems are algorithmically inaccessible. Similar “lost melody”
effects, could be intrinsic to classical geometric and dynamical systems. This extends the reach of
computability barriers beyond quantum models, suggesting that the undecidability pervades both
quantum and classical physics, rooted in the deep structure of field and manifold theory itself.

73

Still, a solution may still possible, laying right beneath the real numbers. In Yang-Mills theory
there are four constants.

Gauge Coupling Constants - for SU(3), SU(2), and U(1) and
QCD Vacuum Angle - the θQCD is constrained experimentally to be near zero.

These are typically treated as real numbers, but all these constants were determined empirically.
They could be modeled as rational numbers with arbitrary precision. Upon researching, I do not claim
this to be a completely novel idea. As Matthew P. Szudzik writes in, The Computable Universe [68]:

“The central problem is that physical models use real numbers to represent the
values of observable quantities, but that recursive functions are functions of non-
negative integers, not functions of real numbers. To show that a model is com-
putable, the model must somehow be expressed using recursive functions. Careful
consideration of this problem, however, reveals that the real numbers are not ac-
tually necessary in physical models.”

The computational properties of geometric models are determined not only by their topological
or smooth structure, but critically by the choice of underlying number system. I might add that the
closer one gets to the Planck length and then below, the worse R behaves. If the real numbers are too
difficult to handle, but natural numbers lack richness needed to encode computation past gauge theories
that correspond to abelian modes in GCMs, then computing over Q or its extensions (implicitly or
explicitly) might just be the winning compromise.

If the issue of computation via construction can be sorted, as far as proving the Yang-Mills Mass
Gap, I can only speculate on a high level road map.

1. Create a category/algebra to accurately map the emergent computational properties of manifolds
that arise from GCT.

2. Formalize the GCM model as a computable fiber bundle via synthetic differential geometry.

3. Show it approximates continuum Yang–Mills dynamics in the scaling limit using a kind of “dif-
ferential computational jet calculus”.

4. Find a spectral gap in the model, as in, a provable “minimum energy” of certain transitions.

5. Then prove that this discrete mass/information gap survives the continuum limit.

This approach reframes the Yang–Mills mass gap problem as a question of information-theoretic
structure. Can the dynamics of a gauge field theory, defined over the continuum and acted on by a
compact simple Lie group, enforce a nontrivial discrete gap in its computational state space? This
translation from an energy gap to an information gap offers a new mental rotation for understanding
both the foundations of gauge theory and the limits of computability in physical systems. In essence,
to attempt to solve the mass gap we cannot just try to compute the solutions to the Yang
Mills equations, but rather we may have to compute with the solutions to the equations
themselves.

To my knowledge and research, this perspective is absent from the current literature, and its
development may offer novel tools for bridging mathematics, physics, and information theory. Needless
to say, the final step of the outline would involve an excruciatingly complex derivation process. The
actual group needed to “power” such a computational process would likely none other than Diff(M)
itself—the group of all diffeomorphisms on smooth manifolds. This group is in a sense an “algebra
that contains all geometry.” Recall the chart of n-logics from 3.6. This is the final entry at the top.
Its geometric expressiveness—“Extreme”, its algebraic closure—“Zero”, less than trivial. To compute
with it is to model the entire universe of possible smooth invertible maps in every dimension. To
program with Diff(M) is to wield an omniscient power over the very fabric and shape of space itself.
By executing the bargain with Atiyah’s devil in reverse, you gain near limitless power, but at a terrible
cost.

Yet, all things considered, and given how little progress has been made thus far, this approach may
still be worth pursuing, despite the peril.

74

Remark 6.8. While speculative connections between KTH4’s structure and fundamental particle
physics or gauge interactions may seem tempting, I do not believe this to be the case. The most
adventurous but conservative approach I am willing to take towards physical interpretation currently
is through discrete gauge-like symmetries. The V4 group does show up several times in the context of
Yang-Mills. Specifically, the four fundamental geometric twin helices invariants may naturally encode
discrete internal symmetries analogous to parity (P), and time-reversal (T) transformations. In par-
ticular it is possible that T is connected to helix orientation and P is connected to helix chirality. This
connection positions geometric computational manifolds as elegant geometric analogues or realizations
of discrete symmetry structures utilized in quantum field theories.

Indeed, there is something unique about the Klein four-group. It is the minimal nontrivial abelian
group with full symmetry but no direction—every non-identity element is its own inverse. Our universe
may be built from the smallest of groups, not just the richest ones. Einstein, Podolsky, and Rosen [69]
may not have been wrong with their paradox, but rather proposed the right solution to the wrong
question.

Disclaimer: The results presented herein should under NO CIRCUMSTANCES be in-
terpreted as a challenge to experimentally validated quantum field theories (such as Quantum
Chromodynamics, Yang–Mills theory, or the Standard Model). Rather, they provide a rigorous geo-
metric and deterministic framework offering new conceptual insights into symmetry, gauge structure,
and hidden-variable formulations. This work aims to enrich our understanding of existing physics, not
supplant or refute it.

75

7 In Closing

Epilouge.
The year is 2153.
The central class hall of the physics grad students at Carnegie Mellon University. A man enters and
looks at his classmates laptop.
“Man, you still using the old Helicycle 16C? Why not upgrade to the Helimax 512?”
“I don’t know dude, I just don’t trust the new non-abelian hardware for my daily driver. And I get that
fuzzy chips are more efficient but it makes me feel weird when we have to turn on precision correction
for certain things. I hear someone messed up the n-ary logic conversion in their code on their latest
CFD assignment and got a D”
“Serves him right for using ChatGPT HV203-O on his homework. And yeah the new NVIDIA H700X
series drivers for HGPUs aren’t quite optimized yet but...”
A woman next to them chimes in, “Hey, word on the street is the dept head just got a grant to upgrade
the server cluster to a new LIE-Compute 133X. I heard it can run 3-valued chirality logic natively.”
“Nice! Hopefully they can afford the Groth-2560 sheaf accelerator coprocessor. My thesis on topolog-
ical fixed-point computation is going to rock.”
The professor enters: “Greetings class—hope everyone is excited, today we’ll be going over proof of
the Chern-Simons quantum hall effect...”
———————————————————————

Indeed. One can dream. But, returning to all seriousness, at this point, the author must confess
that as this paper draws to a close he is both equal parts unsettled and fascinated at the direction it
has taken. While I take full responsibility for the fact that this paper, if proven correct, is indeed likely
to cause at minimum, an epistemic shift of some non-trivial size in the computer science and quantum
physics community, the most important purpose in writing this is to remind people that mathematics
can never be a completely true reflection of reality. We are taught this in undergraduate calculus with
Gabriel’s Horn, and we shouldn’t forget this lesson—even when formulating questions to the universe’s
darkest secrets.

This new subfield formed at the intersection of geometry, topology, and computability theory I
have tentatively named “Geometric Computability Theory” in an attempt to capture the semantic
richness while hopefully steering clear of any confusion with “Computational Geometry”. I had origi-
nally thought one might find a sort of “computable geometric zoo”, of which of many different classes
of manifold were waiting to be discovered. But this may not be the case. Twin helices may be the first
and last of their kind. Geometric computation requires a delicate balance, too much symmetry invites
triviality. The idea that an entire subarea of mathematics purposely went out of its way to disguise
itself in the form of an unusual geometric shape is equal parts astounding and somewhat disturbing.
Whether or not there exists any other GCMs in the unmapped R3 jungle or dimensions plus ultra is
an open question.

Problems like the Riemann Hypothesis may receive the lions share of attention when it comes to
notoriety. Of the remaining 6 Millennium Problems Yang-Mills decidedly ranks in the lower half in
terms of perceived academic interest, and among the 3 that deal with questions at the intersection of
computer science and physics it might easily be considered last. Even if Dr. Tao’s original focus was
on a different question (Naiver-Stokes), Yang-Mills may be where the true demons lie in wait. Perhaps
we should not be so surprised that it has joined the fray of the current academic foray around fluidic
computation. After all, when it comes to fluid and electromagnetism, both are theories of vectors.
Solving the mass gap may not even be possible, but I hope I’ve convinced the reader that either way,
attempting a proof is not just a matter of mimicking some empirical observation. It will push math-
ematics to a new heights and force humanity to re-confront the very essence of what computability
truly is.

Benjamin Kaminsky, B.A. is a graduate of the University of Miami.

76

Disclaimers

Author’s Note on Naming Conventions

It is my explicit wish that no theorems in this work be named after me, nor any past ones retroactively
modified. Any naming attached to objects (e.g., the KTH and KL) is intended solely as a means of
reference and attribution for constructible entities, not for formal results. The focus of this paper is
not personal legacy, but the advancement of geometric computability and its pedagogical applications.

Funding Sources

None. If you wish to support this work my ko-fi is: ko-fi.com/benjaminsky

Conflicts of Interest

None.

AI Contributions and Acknowledgments

Google Gemini and OpenAI ChatGPT were used to assist in generating GAP code and Sage code
for 3D KTH models and geobit space states, as well as to automate the more labor-intensive aspects
of LaTeX typesetting, in lieu of graduate student support. I claim full responsibility for all ideas,
results, and ramifications presented herein. Many productive conversations were had with AI regarding
speculative aspects of Yang–Mills theory, CPT symmetry, and geometric type theory/category theory,
which informed my writing and perspective.

Due to the excruciating technical difficulty of Babai’s groundbreaking quasi-polynomial Graph
Isomorphism algorithm, multiple LLMs were used to validate my algorithmic approach (loosely based
on Babai’s method) in concert with each other.

AI are powerful tools, but only if one can ask the right questions—which, in the end, is what
mathematics is all about.

Email — benkaminskymath@gmail.com

77

Alternate definition for FSS. This is still up for debate. While ideally more rigorous with the
distinction between the tuple, this is being left open for the time.

Definition (Fluidic State System): A Fluidic State System is a 6-tuple:

F = (M,Φ,G,∆, µ, ρ)

Where:

M is a finite configuration space of local geometric states. For example, M = Σ × Θ where Σ is
chirality and Θ is orientation.
Φ is a set of local flow rules, governing propagation between coupled units. That is,

Φ :Mk → G

where k is the size of the neighborhood, and G is the group of allowable morphisms.
G is a group or groupoid of geometric transformations, such as (c1, c2, d1, d2) acting on manifold units.
∆ is a state evolution function, defined as:

∆ :Mk × G →M

Mapping neighborhood state + action to new state.
µ is a masking or observation function,

µ :M → O

where O is the classical observable (e.g., {0, 1} on the display layer).
ρ is a clocking or update regime, such as a sweep rule or asynchronous propagation mode.

References

[1] Carl de Boor. A Practical Guide to Splines, volume 27 of Applied Mathematical Sciences. Springer-
Verlag, New York, NY, 1 edition, 1978.

[2] Hassler Whitney. The self-intersections of a smooth n-manifold in 2n-space. Annals of Mathe-
matics, 45(2):220–243, 1944.

[3] Matthew Cook. Universality in elementary cellular automata. In Andrew Northern and Paola
Carrasco, editors, Proceedings of the First Annual Wolfram Science Conference 2003, Champaign,
IL, 2004. Wolfram Media.

[4] Stephen Wolfram. Universality and complexity in cellular automata. Physica D: Nonlinear Phe-
nomena, 10(1-2):1–35, 1984.

[5] M. Aschbacher. On the maximal subgroups of the finite classical groups. Inventiones Mathemat-
icae, 76:469–514, 1984.

[6] Richard Phillips Feynman. Feynman Lectures on Computation. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, United States, 1998.

[7] John C. Baez and John W. Barrett. The quantum tetrahedron in 3 and 4 dimensions, 1999.

[8] John C. Baez. Getting to the bottom of noether’s theorem, 2022.

[9] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style. LISP
and Symbolic Computation, 6:289–360, 1993.

[10] Tai-Danae Bradley. At the interface of algebra and statistics, 2020.

[11] John C. Baez and James Dolan. Higher-dimensional algebra and topological quantum field theory.
Journal of Mathematical Physics, 36(11):6073–6105, November 1995.

[12] F. William Lawvere. Diagonal arguments and cartesian closed categories. Lecture Notes in Math-
ematics, 92:134–145, 1969.

78

[13] Matthias Felleisen. On the expressive power of programming languages. Science of Computer
Programming, 17(1-3):35–75, 1991.

[14] M. Atiyah. Mathematics in the 20th century. Bulletin of the London Mathematical Society,
34:1–15, 2002.

[15] Joshua Meyers. Computation and category theory. Topos Institute Blog.

[16] Paul Benacerraf. What numbers could not be. The Philosophical Review, 74(1):47–73, Jan 1965.

[17] Stephen Cole Kleene. Introduction to Metamathematics. North-Holland, Amsterdam, 1952.

[18] Robert Cardona, Daniel Peralta-Salas, and Albert Smith. Constructing turing complete euler
flows in dimension 3. Proceedings of the National Academy of Sciences, 118(19):e2026818118,
2021.

[19] Terence Tao. On the universality of the incompressible Euler equation on compact manifolds.
Discrete and Continuous Dynamical Systems, 38(3):1553–1565, 2018.

[20] brusspup. Amazing water and sound experiment #2. YouTube, 2013. Accessed: 2025-07-01.

[21] A. Jadbabaie, N. Motee, and M. Barahona. On the stability of the kuramoto model of coupled
nonlinear oscillators. In Proceedings of the 2004 American Control Conference, volume 5, pages
4296–4301 vol.5, 2004.

[22] Marian Boykan Pour-El and Ian Richards. A computable ordinary differential equation which
possesses no computable solution. Annals of Mathematical Logic, 17:61–90, 1979.

[23] Peter M. Kogge. The Architecture of Symbolic Computers. McGraw-Hill, New York, 1991.

[24] G.J. Sussman, J. Holloway, G.L. Steel, and A. Bell. Scheme-79 — lisp on a chip. Computer,
14(7):10–21, 1981.

[25] R. C. Penner. The decorated Teichmüller space of punctured surfaces. Communications in Math-
ematical Physics, 113:299–339, June 1987.

[26] Brendan Fong. Decorated cospans, 2015.

[27] John C. Baez, Kenny Courser, and Christina Vasilakopoulou. Structured versus decorated cospans.
Compositionality, 4:3, September 2022.

[28] Daniel Müllner. Orientation reversal of manifolds. Algebraic and Geometric Topology,
9(4):2361–2390, November 2009.

[29] Nadia Chouaieb, Alain Goriely, and John H. Maddocks. Helices. Proceedings of the National
Academy of Sciences, 103(25):9398–9403, 2006.

[30] Toshiaki Adachi. Foliation on the moduli space of helices on a real space form. International
Mathematical Forum, 4(35):1699–1707, 2009.

[31] Gino Loria. Spezielle algebraische und transscendente ebene Kurven. Theorie und Geschichte. B.
G. Teubner, Leipzig, 1902.

[32] László Babai. Graph isomorphism in quasipolynomial time. CoRR, abs/1512.03547, 2015.

[33] Joan Solà, Jérémie Deray, and Dinesh Atchuthan. A micro lie theory for state estimation in
robotics. CoRR, abs/1812.01537, 2018.

[34] Ileana Streinu. Pseudo-triangulations, rigidity and motion planning. Computer Science: Faculty
Publications, Smith College, 2005.

[35] László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, STOC ’83, page 171–183, New York, NY,
USA, 1983. Association for Computing Machinery.

79

[36] Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC ’19, page 217–228.
ACM, June 2019.

[37] Arvind and David E. Culler. Tagged Token Dataflow Architecture. Memo 229, Massachusetts
Institute of Technology, Laboratory for Computer Science, Computation Structures Group, jul
1983. Also presented at EASCON ’83, Washington D.C., September 19, 1983.

[38] Seth A. Steinberg, Don Allen, Laura Bagnall, and Curtis Scott. The butterfly™ lisp system. In
Proceedings of the National Conference on Artificial Intelligence, AAAI ’86, Philadelphia, PA,
1986. AAAI Press.

[39] Robert S. Smith, Eric C. Peterson, Mark G. Skilbeck, and Erik J. Davis. An Open-
Source, Industrial-Strength Optimizing Compiler for Quantum Programs. arXiv preprint
arXiv:1910.09033, 2019. Rigetti Computing technical report, last updated April 1, 2020.

[40] Jacob Lurie. On the classification of topological field theories. Current Developments in Mathe-
matics, 2008:129–280, 2009.

[41] Ulrik Buchholtz and Johannes Schipp von Branitz. Primitive recursive dependent type theory,
2024.

[42] S. K. Donaldson. An application of gauge theory to the topology of 4-manifolds. Journal of
Differential Geometry, 18:279–315, 1983.

[43] Andreas Blass. Topoi and computation. Written version of a talk given at the C.I.R.M. Workshop
on Logic in Computer Science, June 1988. Mathematics Dept., University of Michigan.

[44] Kenichi Morita. Theory of reversible computing. Springer, 2017.

[45] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over the
real numbers: NP-COMPLETENESS, recursive functions and universal machines. Bulletin (New
Series) of the American Mathematical Society, 21(1), jul 1989.

[46] Tibor Radó. On non-computable functions. The Bell System Technical Journal, 41(3):877–884,
May 1962.

[47] Ángel González-Prieto, Eva Miranda, and Daniel Peralta-Salas. Topological Kleene Field Theories:
A new model of computation. arXiv preprint arXiv:2503.16100, 2025.

[48] Maxim Kontsevich. Deformation quantization of poisson manifolds, I. Letters in Mathematical
Physics, 66(3):157–216, 2003.

[49] Alain Connes. Non-commutative geometry and the Standard Model of elementary particle physics.
Journal of High Energy Physics, 2000.

[50] Edward Witten. Quantum field theory and the Jones polynomial. Communications in Mathemat-
ical Physics, 121(3):351–399, 1989.

[51] A. Yu. Kitaev. Unpaired Majorana fermions in quantum wires. Physics-Uspekhi, 44(10S):29–36,
2001. Translated from Uspekhi Fizicheskikh Nauk, Volume 171, Issue 1, 2001.

[52] Konstantin Y. Bliokh, Daniel Leykam, Max Lein, and Franco Nori. Topological non-Hermitian
origin of surface Maxwell waves. Nature Communications, 10, 2019.

[53] Jacob A. Barandes. The stochastic-quantum correspondence, 2023.

[54] R. Penrose and M. A. H. MacCallum. Twistor theory: An approach to the quantisation of fields
and space-time. Physics Reports, 6(4):241–315, 1973.

[55] T. C. Kraan and P. van Baal. Periodic instantons with non-trivial Holonomy. Nuclear Physics B,
533(1-3):627–659, 1998.

80

[56] F. R. Klinkhamer and N. S. Manton. A saddle-point solution in the Weinberg-Salam theory.
Physical Review D, 30(10):2212–2220, 1984.

[57] G. ’t Hooft. A property of electric and magnetic flux in nonabelian gauge theories. Nuclear
Physics B, 153:141–160, 1979.

[58] E. Witten. Topological Quantum Field Theory. Communications in Mathematical Physics,
117(3):353–386, 1988.

[59] S. Coleman. Nonabelian plane waves. Physics Letters B, 70(1):59–60, 1977.

[60] M. Atiyah. Geometry of Yang-Mills fields. In G. Dell’Antonio, S. Doplicher, and G. Jona-Lasinio,
editors, Mathematical Problems in Theoretical Physics, volume 80 of Lecture Notes in Physics.
Springer, Berlin, Heidelberg, 1978.

[61] S. K. Donaldson. Yang-mills theory and geometry. Unpublished article, Imperial College, London,
January 2005.

[62] H. A. Kastrup. Canonical theories of lagrangian dynamical systems in physics. Physics Reports,
101(1-2):151, 1983.

[63] Arthur Jaffe and Edward Witten. Quantum Yang–Mills Theory. In James Carlson, Arthur Jaffe,
and Andrew Wiles, editors, The Millennium Prize Problems, pages 129–152. Clay Mathematics
Institute, 2000.

[64] Int’l Centre for Theoretical Physics. Conversation: Salam, sciama, witten and budinich, Oct 2014.
Accessed: 2025-06-18.

[65] Merlin Carl. The lost melody theorem for infinite time blum-shub-smale machines, 2020.

[66] Joel David Hamkins and Andy Lewis. Infinite time turing machines, 1998.

[67] Toby Cubitt, David Perez-Garcia, and Michael M. Wolf. Undecidability of the spectral gap. Forum
of Mathematics, Pi, 10, 2022.

[68] Matthew P. Szudzik. The Computable Universe Hypothesis, page 479–523. WORLD SCIENTIFIC,
October 2012.

[69] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality
be considered complete? Physical Review, 47(10):777–780, 1935.

81

	Introduction
	FVISA Solids and the Properties of Twin Helical Manifolds
	Replacing the Horn
	Volume and Surface Area Integrals on Helical Solids
	Chirality and Alignment
	FVISA Plus Ultra
	The Group Structure and Geometric Topology of Twin Helices

	Geometrically Computable Manifolds—Achieving Turing Completeness in R4
	Geometrically Computable Manifolds
	Geobits—Bits, Geometric Bits, and State Space
	FSM Encoding for KTH
	The GCM Lattice
	Visualizing the Shape of Computation
	The Geometry of Logic
	Syntax, Semantics, and Computation: A New Synthesis

	A Kleene-Theoretic Approach to Foundations for GCT
	Fibered Kets and Tensor Products
	Partial Recursive Functions—Primitives and Composition
	Kleenes Theorems for Computational Groupoids

	A Geometric Topology Framework for Discrete Fluidic Computation
	Fluidic State Systems
	Composition of Quasi-Fluidic GCMs in a KL
	Well-Behaved Vector Fields in ESM+ and the Paradox of Analog Computation
	A Dynamical Systems Approach for Modeling FSS with ODEs
	The Algebra of Flow
	Application of Lie Groupoids to the Quasi-Fluidic Regime
	Fiber Bundles and Moduli Spaces on Chiral Manifolds
	Lancret's Ghost?
	Spooky Action Up Close
	Chaos Unleashed
	A New Frontier and an Algebraic Gap

	Categorical, Philosophical and Practical Considerations for Geometric Computability
	Constructing Categories
	Implications for Reversible Computing
	Comparison to Blum-Shub-Smale Model
	Computing the Uncomputable?
	Relationship to Topological Kleene Field Theories
	Computational Gauge Theory and the Yang-Mills Mass Gap Existence

	In Closing

